文章摘要
张龙,李刚,王庆龙,韩枫,曲克明,朱建新,刘质浩,汪鲁.墨瑞鳕循环水养殖系统中不同生物膜反应器水处理效率及微生物群落对比分析.渔业科学进展,2023,44(6):214-224
墨瑞鳕循环水养殖系统中不同生物膜反应器水处理效率及微生物群落对比分析
Comparative investigation of water treatment performance and microbial communities in different biofilm reactors of a recirculating aquaculture system for Macculochella peeli
投稿时间:2022-07-03  修订日期:2022-08-16
DOI:10.19663/j.issn2095-9869.20220703001
中文关键词: 循环水养殖系统  固定床生物膜反应器  移动床生物膜反应器  硝化反应  微生物群落
英文关键词: Recirculating aquaculture system  Fixed-bed biofilm reactor  Moving-bed biofilm reactor  Nitrification reaction  Microbial community
基金项目:
作者单位
张龙 全国水产技术推广总站 中国水产学会 北京 100125 
李刚 全国水产技术推广总站 中国水产学会 北京 100126 
王庆龙 全国水产技术推广总站 中国水产学会 北京 100127 
韩枫 全国水产技术推广总站 中国水产学会 北京 100128 
曲克明 中国水产科学研究院黄海水产研究所 山东 青岛 266071 
朱建新 中国水产科学研究院黄海水产研究所 山东 青岛 266072 
刘质浩 崂山实验室 山东 青岛 266237 
汪鲁 崂山实验室 山东 青岛 266238 
摘要点击次数: 1047
全文下载次数: 1574
中文摘要:
      固定床生物膜反应器(fixed-bed biofilm bioreactor, FBBR)和移动床生物膜反应器(moving- bed biofilm reactor, MBBR)在养殖水体氨氮(NH4+-N)和亚硝酸氮(NO2–-N)污染控制中已有较为广泛的研究,然而相关研究大多是在实验室完成的,目前尚缺乏实际生产的循环水养殖系统(recirculating aquaculture system, RAS)中FBBR和MBBR水体净化效能的对比研究。因此,本研究将FBBR (弹性毛刷滤料)和MBBR (PVC多孔环滤料)并联接入实际生产的墨瑞鳕(Macculochella peeli) RAS中,实现二者的同步连续运行(35 d),考察了其出水水质变化和微生物群落结构。出水水质变化表明,FBBR和MBBR中氨氧化能力的形成快于亚硝氮氧化能力,硝化能力渐趋成熟,可以有效控制养殖水体中的NH4+-N和NO2–-N浓度,但会导致养殖水体中硝酸氮(NO3–-N)积累和pH下降;单因素方差分析表明,FBBR出水中NH4+-N、NO2–-N、NO3–-N浓度和pH与MBBR出水无显著差异,两反应器的硝化效率相似。FBBR和MBBR在微生物群落上的相同点在于:优势菌门为变形菌门(Proteobacteria) (相对丰度分别为69.42%和86.92%),优势菌纲为γ-变形菌纲(γ-Proteobacteria) (40.71%和63.36%)和α-变形菌纲(α-Proteobacteria) (26.58%和21.74%),优势菌属为不动杆菌属(Acinetobacter) (27.50%和53.29%);硝化菌由亚硝化单胞菌属(Nitrosomonas)和硝化螺菌属(Nitrospira)构成;硝化螺菌属的相对丰度远高于亚硝化单胞菌属,两反应器中可能存在完全氨氧化菌。两反应器在微生物群落上的不同点在于FBBR微生物群落的丰富度和多样性以及硝化菌的相对丰度均高于MBBR。本研究可以为RAS养殖水体净化提供技术支撑,助推循环水养殖模式的推广应用。
英文摘要:
      With the development of the aquaculture industry for high efficiency, energy saving, and environmentally friendly methods, recirculating aquaculture has attracted increasing attention from researchers and practitioners. A recirculating aquaculture system (RAS) consists primarily of an aquaculture module and a water purification module. In the aquaculture module, nitrogen in the feed could be released into the water phase through various routes (i.e., the feedstuff residue and aquaculture animal excretion), whose species can be transformed by microbes. Free ammonia and nitrite have acute toxic effects on aquaculture animals, rendering the efficient removal of ammonia and nitrite essential for the RAS. Compared with physical and chemical methods, biological treatment methods based on microbial nitrification can convert ammonia and nitrite into less toxic nitrate with the advantages of good treatment performance, low operation cost, and little secondary contamination, and have been widely utilized in the purification of multiple wastewaters (e.g., municipal wastewater, industrial wastewater, agricultural wastewater, and ammonia-contaminated groundwater). For the treatment of recirculating water with low and fluctuating nitrogen loads, a biofilm process based on the attached growth of microbes is more suitable than an activated sludge process based on the suspended growth of microbes. To date, a variety of biofilm processes have been developed, among which the fixed-bed biofilm reactor (FBBR) and moving-bed biofilm reactor (MBBR) have been widely investigated for the control of ammonia and nitrite in aquaculture wastewater. However, the relevant studies were mostly conducted in laboratory- and pilot-scale RASs. Thus, there is still a lack of comparative investigations of FBBR and MBBR, which are simultaneously operated in a full-scale RAS. Therefore, a parallel FBBR and MBBR were joined to a full-scale RAS for Macculochella peeli. The FBBR and MBBR were simultaneously and continuously operated for 35 d to investigate variations in their water quality and microbial community structures. The results indicate that the FBBR and MBBR had similar variations in ammonia, nitrite, nitrate, and pH in the effluents. Over the entire operational period, the dissolved inorganic nitrogen (DIN) concentrations gradually increased; the ammonia and nitrite concentrations and their proportions in DIN first increased and then decreased stepwise; and the nitrate concentrations increased gradually, while the variation in the nitrate proportions in DIN was opposite to that of ammonia and nitrite. Both the FBBR and MBBR could transform ammonia and nitrite to nitrate, which resulted in nitrate accumulation and a pH decrease in aquaculture water. During the operation period, the nitrification capacity gradually matured, and ammonia oxidation could occur prior to nitrite oxidation. At 35 d, the concentrations of ammonia, nitrite and nitrate were 0.32 (0.29), 0.27 (0.22) and 29.75 (29.76) mg/L with their proportions in DIN of 1.05% (0.96%), 0.90% (0.72%) and 98.05% (98.32%) in FBBR (MBBR) effluent; pH declined from7.62 (7.59) to 7.25 (7.22) in FBBR (MBBR) effluent. The number of operational taxonomic units (OTU) obtained from the FBBR and MBBR samples were 2,088 and 1,852, respectively, and 1,174 OTUs were shared between FBBR and MBBR. The α indices (Chao1, ACE, Shannon, and Simpson) from the biofilm reactors indicated that FBBR possessed higher richness and diversity of the microbial community than MBBR, which could be attributed to the difference in the internal environment between FBBR and MBBR. In total, 16 phyla, 28 classes, and 149 genera were identified in the FBBR samples, which were slightly fewer than those from the MBBR samples (i.e., 19 phyla, 31 classes, and 155 genera). However, the relative abundance of microbes demonstrated that FBBR and MBBR had similar predominant microbes: Proteobacteria (69.42% in FBBR and 86.92% in MBBR) at the phylum level, γ-Proteobacteria (40.71% in FBBR and 64.36% in MBBR) and α-Proteobacteria (26.58% in FBBR and 21.74% in MBBR) at the class level, and Acinetobacter (27.50% in FBBR and 53.29% in MBBR) at the genus level. Nitrosomonas and Nitrospira constituted the nitrifiers in both FBBR and MBBR, but the relative abundance of nitrifiers was higher in FBBR. Furthermore, the relative abundance of Nitrospira was far higher than that of Nitrosomonas, indicating that complete ammonia oxidation bacteria might exist in FBBR and MBBR. In addition, Vibrio was not found in FBBR and MBBR, but Bdellovibrio was observed. The results of this study can provide technical support for the selection of biological purification technology for RAS, and thus improve the green development of the aquaculture industry. Future studies will focus on: Investigating the effects of water quality conditions and operational parameters on the water treatment performance of FBBR and MBBR; Determining the species of complete ammonia oxidation bacteria and their relative abundances on the filler surface in FBBR and MBBR; Effectively eliminating nitrate in the aquaculture water by introducing microbial denitrification process after FBBR and MBBR to control the total nitrogen in RAS; Establishing a flexible and feasible strategy for controlling the pH in recirculating water by exploring the solid-phase buffers that could serve as the slow-release sources of alkalinity in the biofilm reactor.
附件
查看全文   查看/发表评论  下载PDF阅读器
关闭