宿志伟,赵 峰,刘远平,徐 娜,周德庆,姚建华,李钰金,刘志敏.固相吸附毒素跟踪技术监测牡蛎养殖区中腹泻性贝毒.渔业科学进展,2016,37(6):144-150 |
固相吸附毒素跟踪技术监测牡蛎养殖区中腹泻性贝毒 |
Monitoring of Diarhettic Shellfish Poisons in Aquatic Environment by Solid Phase Adsorbent Toxin Tracking Technology |
投稿时间:2015-10-12 修订日期:2015-11-10 |
DOI:10.11758/yykxjz.20151012001 |
中文关键词: 腹泻性贝类毒素 牡蛎养殖区 固相吸附毒素跟踪技术 高相液相色谱-串联质谱 |
英文关键词: Diarhettic shellfish poisoning Oyster culture zones Solid phase adsorbent toxin tracking(SPATT) LC-MS/MS |
基金项目:国家科技支撑计划课题(2015BAD17B01)资助 |
|
摘要点击次数: 5686 |
全文下载次数: 7183 |
中文摘要: |
本研究根据固相吸附毒素跟踪技术(Solid phase adsorbent and toxin tracking, SPATT)原理,在牡蛎养殖区内,利用HP20大孔吸附树脂对海水中常见的4种腹泻贝类毒素:大田软海绵酸(Okadaic acid, OA)及其衍生物鳍藻毒素(Dinophysistoxin-1, DTX-1和Dinophysistoxin-2, DTX-2)、米氏螺环毒素(Gymnodimine toxins, GYM)进行吸附,对其吸附效率进行评价;建立了从海水中富集与检测4种常见腹泻性贝类毒素的方法;在养殖区内,选取5个采样点,每隔7 d,同步采集海水与牡蛎样品,对牡蛎养殖区海水中和牡蛎体内的腹泻性贝类毒素分布情况进行了检测,分析海水中与牡蛎体内毒素含量的关系。结果显示,HP20树脂对4种腹泻性毒素吸附回收率良好,OA为98.9%,DTX-1为103.3%,DTX-2为93.5%,GYM为76.6%。在整个监控期内,除DTX-2外,其他3种毒素均有检出,OA浓度为20.451–422.352 µg/kg,DTX-1浓度为15.954–368.678 µg/kg,GYM浓度为20.452–282.231 µg/kg。在整个监控期内,海水样品中3种毒素含量随时间的变化呈现同一分布特征,牡蛎体内毒素含量随着海水中毒素含量的升高而升高,且峰值出现延后现象。研究表明,该技术能有效对养殖区水环境进行时空监控,为海水中和海洋贝类体内毒素的监控提供有力的支持,同时也为贝类毒素预警体系的建立提供方法支持。 |
英文摘要: |
Due to the deteriorating marine environment and the repetitive red tides, harmful pollutions with shellfish toxins have caused increasing concerns. Diarhettic shellfish poisons (DSP) are one type of the most dangerous shellfish toxins. To develop an effective method of collecting DSP from sea water, we evaluated the adsorption efficiency of HP20 resin for four common diarhettic shellfish poisons including okadaic acid (OA), dinophysistoxin-1 (DTX-1), dinophysistoxin-2 (DTX-2), and gymnodimine (GYM) in the seawater column, based on the solid phase adsorbent and toxin tracking (SPATT) technology. The distribution of DSPs in the seawater column and their levels in shellfish were measured. We selected five sampling sites in an oyster farming area, collected samples of both the seawater and oysters on a weekly basis, and studied the correlation between the contents of DSPs in the seawater and those in oysters. During a 7-day sampling period, HP-20 resin accumulated showed high adsorption ratios for the four DSPs, which were 98.9%, 103.3%, 93.5%, and 76.6% for OA, DTX-1, DTX-2, and GYM respectively. The DSPs were detected throughout the entire study period except for DTX-2. The concentrations of OA, DTX-1, and GYM were 20.451–422.35 µg/kg, 15.954–368.678 µg/kg, and 20.452–282.231 µg/kg respectively. During the monitoring period, the contents of the three DSPs in the seawater varied temporally and showed a uniform pattern of distribution. The levels of DSPs in oysters were raised along with the increase of DSPs in the seawater with a latent appearance of peak values. These results suggested that our method should be efficient in the simultaneous temporal and spatial monitoring of DSPs in aquatic environments and in shellfish samples. This method may also be applied in DSP early warning system. |
附件 |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|