紫锥菊多糖对中华鳖病毒性腮腺炎的疗效
doi: 10.3969/j.issn.2095-9869.20241124001
代小玲1 , 吕孙建2 , 刘莉2 , 郭琦2 , 沈卫锋2 , 叶子弘1 , 马文君3 , 张明兴4 , 沈智慧4 , 沈万里4 , 卜伟绍5
1. 中国计量大学生命科学学院 浙江 杭州 310018
2. 浙江省农业科学院水生生物研究所 浙江 杭州 310021
3. 浙江省水产技术推广总站 浙江 杭州 310021
4. 余姚市明凤淡水养殖场 浙江 宁波 315100
5. 云和县清江生态龟鳖养殖专业合作社 浙江 丽水 323000
基金项目: 浙江省 2024 年农业重大技术协同推广计划(2024ZDXT16)和余姚市科技计划项目(2023JH03010029)共同资助
Therapeutic Effects of Echinacea purpurea Polysaccharides on Viral Mumps in Trionyx sinensis
DAI Xiaoling1 , LYU Sunjian2 , LIU Li2 , GUO Qi2 , SHEN Weifeng2 , YE Zihong1 , MA Wenjun3 , ZHANG Mingxing4 , SHEN Zhihui4 , SHEN Wanli4 , BU Weishao5
1. College of Life Sciences, China Jiliang University, Hangzhou 310018 , China
2. Institute of Aquatic Biology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 , China
3. Zhejiang Provincial Aquaculture Technology Extension Station, Hangzhou 310021 , China
4. Yuyao Mingfeng Freshwater Farm, Ningbo 315100 , China
5. Qingjiang Ecological Turtle and Softshell Turtle Farming Cooperative, Yunhe County, Lishui 323000 , China
摘要
中华鳖出血综合征病毒(Trionyx sinensis hemorrhagic syndrome virus, TSHSV)是近年来对鳖危害较大的一种水生动脉炎病毒,引起中华鳖腮腺炎,导致其大量死亡,但目前对 TSHSV 仍无有效的治疗方法。紫锥菊多糖(Echinacea purpurea polysaccharide, EPP)是一种天然的植物提取物,具有抗氧化、抗菌、抗病毒和免疫调节等特性。为探究 EPP 对中华鳖腮腺炎的治疗效果,本研究通过死亡率统计、组织病理学、实时荧光定量 PCR 和组织免疫荧光技术评估 EPP 对鳖 TSHSV 感染的保护作用。结果显示,500 mg/kg 浓度的 EPP 能提高感染 TSHSV 的中华鳖存活率,并能显著降低脾脏和肺内的病毒载量,减轻脾脏、肝脏、肾脏和肺等组织器官的损伤。此外,EPP 处理组抗病毒相关基因 rsad2usp18 mRNA 的表达水平较低。综上所述,EPP 对感染 TSHSV 的鳖具有一定的保护作用,能有效抑制 TSHSV 增殖,调节鳖的免疫功能,有望成为预防 TSHSV 的一种有效手段。本研究为研制预防 TSHSV 药物提供了重要的理论基础。
Abstract
Given its rich nutritional and medicinal values, the Chinese soft-shelled turtle (Trionyx sinensis) is considered a particularly important aquacultural species. However, intensive farming has led to frequent outbreaks of bacterial and viral diseases, causing substantial economic losses to the turtle farming industry. In recent years, viral mumps, caused by the pathogen T. sinensis hemorrhagic syndrome virus (TSHSV), has emerged as among the more harmful viral diseases affecting T. sinensis. TSHSV is an enveloped single-stranded RNA virus with a diameter of 60–80 nm that was the first discovered arteritis virus infecting amphibians and reptiles. The main clinical symptoms of TSHSV infection include multi-organ hemorrhage, which is associated with a high rate of mortality. However, there are currently no effective treatments for TSHSV. Although numerous studies have demonstrated that vaccines can be highly effective in preventing viral diseases in aquatic animals, TSHSV is characterized by antibody-dependent enhancement, in which stimulation by polyclonal antibodies promotes a significant upregulation of the antiviral genes rsad2 and mx2, as well as increases in viral copy number. Consequently, there is an urgent need to identify alternative effective technical approaches for the prevention of TSHSV. Given their safety, efficacy, minimal toxic side effects, low risk of resistance development, and reduced drug residues, Chinese herbal medicines meet the requirements of environmentally friendly aquaculture. Additionally, they are beneficial with respect to consumer health, and have accordingly gained widespread application in the prevention and treatment of diseases in aquatic animals. In this regard, Jiao et al. found that curcumin could enhance the survival of T. sinensis infected with TSHSV and inhibit viral proliferation in vivo. However, apart from this finding, to date, no other preventive measures against TSHSV have been discovered. The purple coneflower (Echinacea purpurea) is among the widely used herbs available on the international herbal market and is known for its antibacterial, antiviral, anti-inflammatory, and immunomodulatory effects. Among its active constituents, polysaccharides are considered among the main compounds contributing to the medicinal properties of E. purpurea. Luettig et al. discovered that different concentrations of E. purpurea polysaccharide (EPP) can stimulate macrophages to release tumor necrosis factor α (tnf-α) and interferon β (ifn-β), thereby enhancing immune activity. Furthermore, it is noteworthy that studies conducted to date have also found that EPP can alleviate viral infections both in vitro and in vivo. For example, in vivo experiments have revealed that EPP can significantly inhibit lesions caused by influenza A virus infection in mice, whereas, in vitro, it has been demonstrated that L926 cells treated with EPP are characterized by resistance to herpes simplex virus (HSV-I) infection. In addition, the E. purpurea preparation echinacein has been shown to inhibit the replication of EMC-virus and vesicular stomatitis virus (VSV), have certain inhibitory effects on SARS-CoV-2 and HIV, and can confer protective effects in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). However, to date, there have been no reports regarding the protective effects of EPP against viruses infecting aquatic animals. Early studies in this field have revealed that TSHSV and PRRSV are both arteriviruses, and it is accordingly reasoned that EPP may also have protective effects in soft-shelled turtles infected with TSHSV. Consequently, in order to assess the therapeutic effects of EPP on T. sinensis mumps, in this study, we sought to determine the antiviral and immunomodulatory effects of EPP on TSHSV infection in T. sinensis based on hematoxylin and eosin (HE) staining, qRT-PCR, and tissue immunofluorescence analyses. The results revealed that at a concentration of 500 mg/kg, EPP can contribute to enhancing the survival of soft-shelled turtles infected with TSHSV, significantly reduce viral loads in the spleen and lungs, and alleviate damage caused to tissues and organs, such as the spleen, liver, kidneys, and lungs. In addition, mRNA expression levels of the antiviral-related genes rsad2 and usp18 were found to be lower in the EPP-treated individuals. In summary, EPP was established to have certain protective effects in T. sinensis infected with TSHSV. Specifically, EPP can effectively inhibit TSHSV proliferation and modulate the immune function of T. sinensis, thereby indicating its potential application as a means of preventing TSHSV. Our findings in this study will provide an important basis for the development of drugs to prevent TSHSV.
中华鳖(Trionyx sinensis),俗称甲鱼,因其丰富的营养价值和药用价值而被广泛养殖,2023 年全国养殖总产量高达 497 536 t(农业农村部渔政管理局等,2024)。然而,集约化养殖导致细菌性疾病和病毒性病害频繁暴发,给鳖养殖业造成巨大的经济损失。病毒性腮腺炎是近年来对鳖危害较大的一类病毒病,其病原为中华鳖出血综合征病毒(Trionyx sinensis hemorrhagic syndrome virus,TSHSV),感染的主要临床症状为多器官出血,且具有传染性强、死亡率高等特点(Liu et al,2017)。TSHSV 是一种直径为 60~80 nm 的包膜单链 RNA 病毒,是最早发现的感染两栖爬行动物的动脉炎病毒(Lyu et al,2019)。疫苗在预防水生动物病毒性疾病方面取得了突出的效果(张厚梅,2009)。但 TSHSV 出现了抗体依赖性增强(antibodydependent enhancement,ADE),在多克隆抗体的刺激下,抗病毒基因 rsad2mx2 以及病毒拷贝数均显著上调(Lyu et al,2021)。因此,迫切需要寻找其他能够有效预防 TSHSV 的技术手段。
中草药因具有安全性高、疗效显著、毒副作用小、不易产生耐药性和药物残留等优势,契合无公害水产养殖的要求,同时对消费者健康具有促进作用,因此在水生动物疾病防治中得到广泛应用(张厚梅,2009; 梁利国等,2010)。Jiao 等(2023)体内实验发现,姜黄素(Curcumin)能提高鳖感染 TSHSV 后的存活率,并抑制病毒复制。然而,目前尚未发现其他针对 TSHSV 的有效预防手段。
紫锥菊(Echinacea purpurea)是国际市场上备受欢迎的草药之一,具有抗氧化、抗菌、抗病毒、抗炎和免疫调节等多种功效,其中的多糖(polysaccharide)被认为是紫锥菊中发挥药用活性的主要成分之一(李玲兰等,2023; Canlas et al,2010; 莫秋芬等,2016)。 Luettig 等(1989)发现不同浓度的紫锥菊多糖(EPP)可以刺激巨噬细胞释放肿瘤坏死因子 α(tnf)和干扰素 β(ifn),进而增强免疫活性。Steinmüller 等(1993) 报道了 EPP 可抑制白色念珠球菌(Candida albicans)的增殖,延长感染小鼠(Mus musculus)的寿命。寨鸿瑞等(2022)也发现 EPP 对奶牛乳房炎病原菌金黄色葡萄球菌(Staphylococcus aureus)、大肠杆菌(Escherichia coli)具有抑菌作用。值得注意的是,研究还发现 EPP 能缓解病毒引起的体外、体内感染,例如在动物体内实验中,EPP 对小鼠感染 A 型流感病毒具有明显的抑制体内病变的作用(Bodinet et al,2002)。在体外实验中,EEP 处理后的 L926 细胞对单纯疱疹病毒(HSV-I)感染具有抵抗力(Binns et al,2002)。此外,紫锥菊制剂——紫锥菊辛还可以抑制脑心肌炎病毒(EMC-Virus)和滤泡性口炎病毒(VSV)的复制,对严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)和人类免疫缺陷病毒(HIV)也具有一定的抑制作用,并且对繁殖与呼吸综合征病毒(PRRSV)感染的猪能提供保护作用(Moltó et al,2012; Vimalanathan et al,2022; 肖培根,1996)。然而,关于 EPP 对水生病毒的抗病毒作用却少见报道。早期的研究表明,TSHSV 与 PRRSV 同属于动脉炎病毒,推测 EPP 可能对 TSHSV 感染的鳖也具有一定保护效果。
本研究旨在评估 EPP 对 TSHSV 感染的预防效果。通过灌喂 EPP 后的攻毒实验,以统计的死亡率明确 EPP 对病毒感染的免疫保护作用。此外,结合苏木精 –伊红(HE)染色、组织免疫荧光技术以及实时荧光定量 PCR(qRT-PCR)方法,系统分析 EPP 对 TSHSV 感染中华鳖的器官保护、抗病毒能力及免疫调节效果。该研究有望为 TSHSV 的预防与治疗提供重要的理论依据和实践支持。
1 材料与方法
1.1 动物与病毒样品准备
实验中使用的所有健康鳖来自浙江省杭州市的某中华鳖养殖基地,平均规格为 100~200 g,经检测确认未携带 TSHSV。实验前暂养在温度为 28℃的水箱中。用于制备粗病毒的病鳖与健康鳖来自同一个养殖基地,并采用逆转录 PCR(RT-PCR)方法鉴定为 TSHSV 阳性(Liu et al,2015)。制备病毒时,将 TSHSV 阳性鳖的肺、脾、肾等组织收集在磷酸盐缓冲溶液(PBS)中匀浆[组织质量(g)/PBS 体积(mL)为 1∶5], 12 000 r/min 离心 30 min 后取上清液,然后 0.22 μm 过滤器过滤。按照(Liu et al,2015)的方法,将得到的粗病毒通过 qRT-PCR 检测病毒载量,测定其 RNA 拷贝数为 1×107 copies/μL,–80℃保存,以备进一步实验。
1.2 实验分组
将鳖随机分为健康对照组(CK,既未感染病毒也不进行 EPP 处理)、TSHSV 攻毒组(只感染病毒不进行 EPP 处理)和紫锥菊多糖组(感染病毒前用 EPP 处理)。每组 20 只鳖,其中 10 只用于后续相关实验检测,10 只用于观察死亡率并根据死亡率评估 EPP 的药物安全性。
1.3 EPP 投喂方式
按照 500 mg/kg 的浓度,采用灌喂方式对鳖注入药物。灌喂时用 0.9%生理盐水稀释药物至 20 mg/mL(25 mL,其中母液 0.5 mL,生理盐水 24.5 mL),每只灌喂 2.5 mL,每组灌喂 20 只,总计 25 mL。每天 1 次,连续灌喂 7 d。CK 组和 TSHSV 组给予等量生理盐水。
1.4 TSHSV 感染
灌喂 EPP 7 d 结束后,按照每 100 g 鳖 200 μL 粗病毒液腹腔注射病毒。CK 组注射等体积 PBS。
1.5 组织收集
在感染 3 d 后,TSHSV 感染组有 8 只出现了呼吸困难和颈部无力的体征和症状,EPP 处理组没有出现该症状。将 TSHSV 感染组出现体征和症状以及 EPP 处理组未出现症状的鳖解剖,并采集肝脏、脾脏、肺、肾脏和心脏等组织。每个组织分为 3 部分,其中用于定量检测的组织置于–80℃保存,用于组织病理分析和免疫荧光的组织立即用 4%多聚甲醛固定。
1.6 EPP 对 TSHSV 感染组织的保护作用
将用 4%多聚甲醛固定的组织石蜡包埋,6 μm 切片后进行 HE 染色。观察 EPP 灌喂鳖和未灌喂鳖的组织病理学特征,并进行比较。
1.7 EPP 对 TSHSV 的抑制作用
为了解 EPP 对病毒复制的影响,通过 qRT-PCR 检测 TSHSV 在不同组的肝脏、脾脏、肾脏、肺和心脏中的相对表达量,并利用免疫荧光分析 TSHSV 在组织中的累积情况。将固定后的组织进行切片、包埋,然后用病毒蛋白(TSHSV-HP4)的多抗(A661)作为一抗,FITC 标记的羊抗兔抗作为二抗,进行免疫荧光检测捕获病毒的富集情况。实验中所用的 A661 抗体由本实验室制备并保存,二抗购自江苏亲科生物研究中心有限公司。采用徕卡 DMi8 荧光显微镜采集图像,并用 ImageJ 软件(版本 1.8.0)测定荧光强度。
1.8 免疫基因与 TSHSV 的 qRT-PCR 分析
按照试剂盒说明书,使用 RNAisoPlus 试剂(TaKaRa,日本)提取组织总 RNA,然后用分光光度法检测 RNA 的浓度和纯度。按照试剂盒说明书,使用 PrimeScript™ RT Master Mix 试剂(Perfect Real Time)(TaKaRa,日本)将约 1 μg 的 RNA 反转录为 cDNA,合成的 cDNA 按 1∶5 稀释,作为 PCR 模板。 qRT-PCR 采用 TBGreen® Premix Ex Taq™(TliRNaseH Plus)试剂(TaKaRa,日本)。利用 NCBI 进行特异性引物的设计(表1),由北京擎科生物科技股份有限公司合成引物。每 20 μL 反应体系包括 10 μL TBgreen、0.5 μL 特异性引物、4 μL 水和 5 μL cDNA。反应条件:95℃ 30 s;95℃ 30 s,60℃ 30 s,70℃ 15 s 40 个循环。Ct 值经 β-actin 归一化后,用 2ΔΔCt 法测定免疫相关基因的 mRNA 表达水平。
1实验中使用的特异性引物
Tab.1Specific primers used in the experiment
1.9 统计分析
数据以均数±标准误(Mean±SE)表示。对所有实验数据进行单因素方差分析(one-way ANOVA)以确定各组间的差异。使用 IBM Statistics SPSS 20.0 和 Excel 进行数据分析。使用 GraphPad Prism 8.0 绘图。
2 结果
2.1 EPP 对感染鳖的保护作用
在鳖感染 TSHSV 3 d 后开始出现呼吸困难和颈部无力等症状时解剖,发现肝组织肿大、严重充血,明显的肠出血、肿胀,但没有穿孔。而灌喂 EPP 的感染鳖肠道比未灌喂鳖肠道充血状态有明显改善(图1a~c)。为了解 EPP 对感染 TSHSV 鳖的保护作用,统计 TSHSV 感染过程中鳖的死亡率,发现在感染第 4 天后,对照组和 EPP 处理组的鳖死亡率低于 TSHSV 感染组(图1d),表明 EPP 在降低感染鳖的死亡率上具有潜在的保护作用。
2.2 EPP 对感染鳖组织的保护作用
组织病理学分析发现,空白对照组的组织没有病变出现。与 TSHSV 感染组相比,EPP 处理组的组织损伤有所减轻(图2a)。TSHSV 感染的肝脏细胞肿胀、细胞核浓缩,肝窦内有明显的血液淤积,胆管周围有广泛的炎症细胞浸润(图2b、2c)。在 TSHSV 感染的脾脏中,淋巴结出现严重的萎缩、坏死、解体(图2e、 2f),而 EPP 处理的感染鳖脾脏淋巴结萎缩状态有改善(图2d)。与 EPP 处理的感染鳖相比,在 TSHSV 感染的肾组织中,肾细胞表现为核固缩和核溶解;肾小管萎缩,肾小囊肥大和扩张,导致间隙增大;肾组织出血处出现坏死(图2g~i)。与 EPP 处理的感染鳖相比, TSHSV 感染的肺组织中表现出明显的结构紊乱,肺泡细胞以细胞核溶解为特征;出现急性坏死性毛细支气管炎伴炎症细胞浸润以及肺泡腔内大量纤维蛋白; 肺组织有明显急性出血,红细胞渗出(图2j~l)。
2.3 EPP 对 TSHSV 的抑制作用
采用免疫荧光检测各组织中病毒蛋白表达,发现在感染第 3 天,对照组病毒蛋白表达水平较低(图3a)。与 TSHSV 感染组相比,EPP 可以抑制肝脏、脾脏、肺和心脏中的病毒蛋白水平(图3a、3b)。病毒载量检测结果显示,EPP 显著降低了脾脏和肺内的病毒载量(图3c),差异具有统计学意义。
2.4 EPP 对抗病毒相关基因表达的影响
检测抗病毒相关基因的表达情况。结果显示, TSHSV 感染第 3 天时,对照组 rsad2usp18 mRNA 表达量较低。与 TSHSV 感染组相比,EPP 降低了鳖各组织中的 rsad2 mRNA 表达,特别是在肝脏中,与感染组相比差异显著(P<0.05)(图4a)。同时,EPP 也降低了 usp18 mRNA 在各感染组织的表达量,其中肝组织的 mRNA 显著低于感染组(P<0.05)(图4b)。
1EPP 对感染鳖的保护作用
Fig.1The protective effect of EPP on infected T. sinensis
a:健康对照组;b:TSHSV 感染组,在鳖感染 TSHSV 3 d 后肝组织肿大、严重充血,肠明显出血、肿胀,没有穿孔; c:EPP 处理组,灌喂 EPP 的感染鳖肠道比未灌喂鳖肠道充血状态有明显改善;d:TSHSV 感染后 EPP 处理组、TSHSV 感染组以及对照组的鳖死亡率统计,在感染 7 d 内,EPP 处理组的死亡率低于 TSHSV 感染组。
a: Healthy control group; b: TSHSV infection group, 3 days after the T. sinensis were infected with TSHSV, the liver tissue was swollen and severely congested, with significant intestinal bleeding and swelling, but no perforation; c: EPP group, the intestinal congestion condition of the infected T. sinensis fed with EPP was significantly improved compared to the untreated ones; d: The statistics of death rates of T. sinensis in EPP treatment group, TSHSV infection group and control group after viral infection, within 7 days of infection, the mortality rate of the EPP treatment group was lower than that of the TSHSV infection group.
3 讨论与结论
EPP 对水生动物疾病具有一定的保护作用,能有效降低在鱼类中由嗜水气单胞菌(Aeromonas hydrophila)引发的感染(Reverter et al,2014)、减轻由病毒感染引起的鲤春病毒病(Spring Viraemia of Carp,SVC)的症状(Awad et al,2017)。本研究结果表明,EPP 对 TSHSV 具有潜在的抑制作用。用 500 mg/kg 的 EPP 处理后,感染鳖的存活率达到 100%。目前,EPP 作为一种抗病毒制剂已被广泛研究。临床实验证明,紫锥菊对 PRRSV 有较好的疗效(马少朋等,2016)。前期对于 TSHSV 的研究表明,TSHSV 与 PRRSV 同属于动脉炎病毒(Lyu et al,2019),紫锥菊对这 2 种病毒的抑制机制可能具有相似性。本研究发现,EPP 对多个组织器官都有一定保护作用,尤其对肺的保护作用最好。已有研究发现,EPP 是改善急性肺损伤,进而能对抗肺部疾病的有效药物(Zhang et al,2020)。
免疫相关基因的表达水平能在一定程度上反映机体的健康状态和免疫反应(Naiel et al,2022)。定量检测发现,在鳖感染 TSHSV 后,免疫相关基因 rsad2usp18 mRNA 显著上调表达,这与之前的研究结果一致(Liu et al,2017; Lyu et al,2020)。Rsad2 是干扰素刺激基因之一,在病毒感染后高度上调表达(Seo et al,2011)。Rsad2 通过抑制病毒粒子释放过程,对流感病毒(IAV)、呼吸道合胞病毒(RSV)、丙型肝炎病毒(HCV)、PRRSV、人巨细胞病毒(HCMV)、马传染性贫血病毒(EIAV)和 HIV 具有广泛的抗病毒活性(Chin,2001; Nasr et al,2012; Jiang et al,2008; Wang et al,2007; Fang et al,2016; McGillivary et al,2013; Tang et al,2014)。在 EPP 治疗 3 d 后,TSHSV 和 rsad2 总体水平呈下降趋势,提示 EPP 在抗病毒活性中发挥关键作用。Usp18ifn 抗病毒过程中的重要负性调节因子,在干扰素抗病毒信号转导通路中发挥重要作用(Malakhova et al,2003; Malakhov et al,2002)。 Usp18 在体外过表达可以通过抑制 ifn-1 的表达,促进登革热病毒(Dengue virus)(Ye et al,2021)、艾滋病(HIV-1)(Lin et al,2024)、PRRSV(Li et al,2014)的复制。Kim 等(2008)研究发现,在 usp18 基因敲除的小鼠稳定表达的乙型肝炎病毒-DNA 水平有明显的下降,并且 usp18 基因缺失小鼠对病毒感染的抵抗能力增强。本研究中,EPP 治疗 3 d 后,TSHSV 和 usp18 mRNA 表达水平呈下降趋势,可能与 usp18 负调控 ifn-1 参与抗病毒免疫反应有关。同时,EPP 治疗的感染鳖 7 d 后存活率达到 100%,提示 EPP 可能具有增强抵抗力和抗病毒活性的作用。
2对照组、感染组以及 EPP 处理组的组织病理切片
Fig.2Histological sections of the control group, infection group, and EPP-treated group
a:EPP 处理组肝脏;b:感染组肝脏,红色箭头代表血细胞浸润,黑色箭头代表炎症细胞浸润,红色圆圈代表核固缩;c:健康肝脏;d:EPP 处理组脾脏;e:感染组脾脏,黑色圆圈代表淋巴结萎缩坏死; f:健康脾脏;g:EPP 处理组肾脏;h:感染组肾脏,蓝色箭头代表核固缩、核碎裂、核溶解,黄色箭头代表肾小管充满血细胞、肾小管萎缩、肾小囊大小改变。i:健康肾脏;j:EPP 处理组肺; k:感染组肺,紫色箭头代表血细胞浸润,白色箭头代表炎症细胞浸润;l:健康肺。
a: Liver of the EPP-treated group; b: Liver of the infected group, red arrow indicates blood cell infiltration, black arrow indicates inflammatory cell infiltration, and red circle indicates karyorrhexis; c: Healthy liver; d: Spleen of the EPP-treated group; e: Spleen of the infected group, black circle indicates lymph node atrophy and necrosis; f: Healthy spleen; g: Kidney of the EPP-treated group; h: Kidney of the infected group, blue arrow indicates, karyopyknosis, karyorrhexis, and karyolysis, and yellow arrow indicates renal tubules filled with blood cells, renal tubular atrophy, and changes in the size of Bowman's capsule; i: Healthy kidney; j: Lung of the EPP-treated group; k: Lung of the infected group, purple arrow indicates blood cell infiltration, and white arrow indicates inflammatory cell infiltration; l: Healthy lung.
总之,本研究旨在更好地了解 EPP 的组织保护以及抗 TSHSV 作用。TSHSV 引起肝脏、肾脏和肺部的细胞解体和充血。500 mg/kg EPP 浓度对中华鳖有较强的抗 TSHSV 作用。EPP 还能调节 2 种抗病毒基因的 mRNA 水平。综上所述,EPP 可能是一种很有前景的提高抗病能力的膳食补充剂。进一步了解 EPP 治疗对 TSHSV 分子机制的影响,将为研制预防 TSHSV 的药物提供依据。
3EPP 对 TSHSV 的抑制作用
Fig.3Inhibitory effect of EPP on TSHSV
a:免疫荧光检测 EPP 处理组的各组织病毒蛋白变化情况,EPP 能抑制肝脏、脾脏、肺和心脏中的病毒蛋白水平,红色荧光代表病毒 TSHSV-HP4 蛋白,蓝色荧光代表细胞核; b:鳖各组织中免疫强度的计算;c:EPP 显著降低了脾脏和肺内的病毒载量。 *:P<0.05;**:P<0.01;***:P<0.001。
a: Immunofluorescence detection of viral protein changes in various tissues of the EPP-treated group. EPP can inhibit viral protein levels in the liver, spleen, lung, and heart. Red fluorescence represents viral proteins, and blue fluorescence represents cell nuclei. b: Calculation of immune intensity in various tissues of the turtle. c: EPP significantly reduced the viral load in the spleen and lung. *: P<0.05; **: P<0.01; ***: P<0.001.
4EPP 作用下免疫相关基因的表达
Fig.4Expression of immune-related genes under the effect of EPP
*: P<0.05; **: P<0.01; ***: P<0.001.
1EPP 对感染鳖的保护作用
Fig.1The protective effect of EPP on infected T. sinensis
2对照组、感染组以及 EPP 处理组的组织病理切片
Fig.2Histological sections of the control group, infection group, and EPP-treated group
3EPP 对 TSHSV 的抑制作用
Fig.3Inhibitory effect of EPP on TSHSV
4EPP 作用下免疫相关基因的表达
Fig.4Expression of immune-related genes under the effect of EPP
1实验中使用的特异性引物
Tab.1Specific primers used in the experiment
AWAD E, AWAAD A. Role of medicinal plants on growth performance and immune status in fish. Fish & Shellfish Immunology, 2017, 67: 40-54
BINNS S E, HUDSON J, MERALI S, et al. Antiviral activity of characterized extracts from Echinacea spp. (Heliantheae: Asteraceae) against Herpes simplex virus (HSV-I). Planta Medica, 2002, 68(9): 780-783
BODINET C, MENTEL R, WEGNER U, et al. Effect of oral application of an immunomodulating plant extract on Influenza virus type A infection in mice. Planta Medica, 2002, 68(10): 896-900
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2024. Beijing: China Agriculture Press, 2024[农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2024中国渔业统计年鉴. 北京: 中国农业出版社, 2024]
CANLAS J, HUDSON J B, SHARMA M, et al. Echinacea and trypanasomatid parasite interactions: Growth-inhibitory and anti-inflammatory effects of Echinacea. Pharmaceutical Biology, 2010, 48(9): 1047-1052
CHIN K C, CRESSWELL P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(26): 15125-15130
FANG J Y, WANG H Y, BAI J, et al. Monkey viperin restricts porcine reproductive and respiratory syndrome virus replication. PLoS One, 2016, 11(5): e0156513
JIANG D, GUO H T, XU C X, et al. Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. Journal of Virology, 2008, 82(4): 1665-1678
JIAO J B, YAO J Y, LIN F, et al. The infection properties of Trionyx sinensis hemorrhagic syndrome virus and the antiviral effect of curcumin in vivo. Animals, 2023, 13(23): 3665
KIM J H, LUO J K, ZHANG D E. The level of hepatitis B virus replication is not affected by protein ISG15 modification but is reduced by inhibition of UBP43 (USP18) expression. The Journal of Immunology, 2008, 181(9): 6467-6472
LI L L, XU Y S, LEI Y J, et al. Research progress of active components and extracts of Echinacea purpurea in anti-inflammatory effect. Shaanxi Medical Journal, 2023, 52(1): 114-117[李玲兰, 徐玉善, 雷玉洁, 等. 紫锥菊活性成分及其提取物在抗炎作用中的研究进展. 陕西医学杂志, 2023, 52(1): 114-117]
LI Y P, SUN Y, XING F, et al. Identification of a single nucleotide promoter polymorphism regulating the transcription of ubiquitin specific protease 18 gene related to the resistance to porcine reproductive and respiratory syndrome virus infection. Veterinary Immunology and Immunopathology, 2014, 162(3/4): 65-71
LIANG L G, YAN B L, ZHANG X J, et al. Study on the antibacterial effects of common Chinese herbs against four pathogenic Vibrio sp. in vitro. Progress in Fishery Sciences, 2010, 31(2): 114-119[梁利国, 阎斌伦, 张晓君, 等. 常用中草药对4种病原弧菌体外抗菌效果的研究. 渔业科学进展, 2010, 31(2): 114-119]
LIN C H, KUFFOUR E O, LI T L, et al. The ISG15-protease USP18 is a pleiotropic enhancer of HIV-1 replication. Viruses, 2024, 16(4): 485
LIU L, CAO Z, LIN F, et al. Partial sequence of a novel virus isolated from Pelodiscus sinensis hemorrhagic disease. Intervirology, 2015, 58(4): 197-204
LIU L, CAO Z, LIN F, et al. The histopathological characteristics caused by Trionyx sinensis hemorrhagic syndrome virus (TSHSV) and comparative proteomic analysis of liver tissue in TSHSV-infected Chinese soft-shelled turtles (Pelodiscus sinensis). Intervirology, 2017, 60(1/2): 19-27
LUETTIG B, STEINMÜLLER C, GIFFORD G E, et al. Macrophage activation by the polysaccharide Arabinogalactan isolated from plant cell cultures of Echinacea purpurea. Journal of the National Cancer Institute, 1989, 81(9): 669-675
LYU S J, YUAN X M, LIU L, et al. Application of a recombinant replicase to localize the Trionyx sinensis hemorrhagic syndrome virus and evaluate its effects on antiviral genes of T. sinensis. Journal of Zhejiang University Science B, 2021, 22(4): 295-304
LYU S J, YUAN X M, ZHANG H Q, et al. Complete genome sequence and analysis of a new lethal arterivirus, Trionyx sinensis hemorrhagic syndrome virus (TSHSV), amplified from an infected Chinese softshell turtle. Archives of Virology, 2019, 164(10): 2593-2597
LYU S J, YUAN X M, ZHANG H Q, et al. Transcriptome profiling analysis of lung tissue of Chinese soft-shell turtle infected by Trionyx sinensis hemorrhagic syndrome virus. Fish & Shellfish Immunology, 2020, 98: 653-660
MA S P, YAO W P, FU Y F, et al. Influence of Echinacea compound on the immune effect of PRRS. Journal of Traditional Chinese Veterinary Medicine, 2016, 35(2): 50-52[马少朋, 姚维平, 付艳芳, 等. 紫锥菊复方对猪呼吸与繁殖障碍综合征疫苗免疫效果的影响. 中兽医医药杂志, 2016, 35(2): 50-52]
MALAKHOV M P, MALAKHOVA O A, KIM K I, et al. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. Journal of Biological Chemistry, 2002, 277(12): 9976-9981
MALAKHOVA O A, YAN M, MALAKHOV M P, et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes & Development, 2003, 17(4): 455-460
MCGILLIVARY G, JORDAN Z B, PEEPLES M E, et al. Replication of respiratory syncytial virus is inhibited by the host defense molecule viperin. Journal of Innate Immunity, 2013, 5(1): 60-71
MO Q F, XU X, MAO Y L, et al. Effect of Echinacea extract on immune function in murine macrophage. Chinese Journal of Animal Science, 2016, 52(15): 52-57[莫秋芬, 徐歆, 毛予龙, 等. 紫锥菊提取物对小鼠巨噬细胞免疫功能的影响. 中国畜牧杂志, 2016, 52(15): 52-57]
MOLTÓ J, VALLE M, MIRANDA C, et al. Herb-drug interaction between Echinacea purpurea and etravirine in HIV-infected patients. Antimicrobial Agents and Chemotherapy, 2012, 56(10): 5328-5331
NAIEL M A E, ABD EL-HAMEED S A A, ARISHA A H, et al. Gum Arabic-enriched diet modulates growth, antioxidant defenses, innate immune response, intestinal microbiota and immune related genes expression in tilapia fish. Aquaculture, 2022, 556: 738249
NASR N, MADDOCKS S, TURVILLE S G, et al. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. Blood, 2012, 120(4): 778-788
REVERTER M, BONTEMPS N, LECCHINI D, et al. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture, 2014, 433: 50-61
SEO J Y, YANEVA R, CRESSWELL P. Viperin: A multifunctional, interferon-inducible protein that regulates virus replication. Cell Host & Microbe, 2011, 10(6): 534-539
STEINMÜLLER C, ROESLER J, GRÖTTRUP E, et al. Polysaccharides isolated from plant cell cultures of Echinacea purpurea enhance the resistance of immunosuppressed mice against systemic infections with Candida albicans and Listeria monocytogenes. International Journal of Immunopharmacology, 1993, 15(5): 605-614
TANG Y D, NA L, ZHU C H, et al. Equine viperin restricts equine infectious Anemia virus replication by inhibiting the production and/or release of viral Gag, Env, and receptor via distortion of the endoplasmic reticulum. Journal of Virology, 2014, 88(21): 12296-12310
VIMALANATHAN S, SHEHATA M, SADASIVAM K, et al. Broad antiviral effects of Echinacea purpurea against SARS-CoV-2 variants of concern and potential mechanism of action. Microorganisms, 2022, 10(11): 2145
WANG X Y, HINSON E R, CRESSWELL P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host & Microbe, 2007, 2(2): 96-105
XIAO P G. Internationally popular immunomodulators-Echinacea purpurea and its preparations. Chinese Herbal Medicine, 1996(1): 46-48[肖培根. 国际流行的免疫调节剂──紫锥菊及其制剂. 中草药, 1996(1): 46-48]
YE H Y, DUAN X Q, YAO M, et al. USP18 mediates interferon resistance of Dengue virus infection. Frontiers in Microbiology, 2021, 12: 682380
ZHAI H R, ZHANG D L, GUO Q. Antibacterial study of seven Chinese herbal medicines on pathogenic bacteria causing bovine mastitis in vitro. China's Dairy Industry, 2022(8): 34-37[寨鸿瑞, 张懂理, 郭庆. 7味中药对奶牛乳房炎病原菌的体外抑菌试验研究. 中国乳业, 2022(8): 34-37]
ZHANG H H, LANG W Y, WANG S Y, et al. Echinacea polysaccharide alleviates LPS-induced lung injury via inhibiting inflammation, apoptosis and activation of the TLR4/NF-κB signal pathway. International Immuno-pharmacology, 2020, 88: 106974
ZHANG H M. Application of Chinese herbal medicine in prevention and treatment of aquatic animal diseases. Anhui Agricultural Science Bulletin, 2009, 15(15): 204-205[张厚梅. 中草药在水生动物病害防治中的应用. 安徽农学通报(上半月刊), 2009, 15(15): 204-205]