许氏平鲉感染美人鱼发光杆菌美人鱼亚种后的生理与炎症反应特征分析
doi: 10.3969/j.issn.2095-9869.20241225001
张岩1,2,3 , 于永翔2,3 , 王春元2,3 , 王印庚2,3 , 荣小军2,3 , 廖梅杰2,3 , 张志琪2,3 , 张正2,3
1. 上海海洋大学水产与生命学院 上海 201306
2. 海水养殖生物育种与可持续产出全国重点实验室中国水产科学研究院黄海水产研究所 山东 青岛 266071
3. 青岛海洋科技中心海洋渔业科学与食物产出过程功能实验室 山东 青岛 266237
基金项目: 国家重点研发计划(2023YFD2400704)、山东省自然科学基金(ZR2021MC027)和中国水产科学研究院基本科研业务费(2020TD40)共同资助
Physiological and Pathological Characteristics of Sebastes schlegelii After Photobacterium damselae subsp. damselae Infection
ZHANG Yan1,2,3 , YU Yongxiang2,3 , WANG Chunyuan2,3 , WANG Yingeng2,3 , RONG Xiaojun2,3 , LIAO Meijie2,3 , ZHANG Zhiqi2,3 , ZHANG Zheng2,3
1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306 , China
2. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071 , China
3. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237 , China
摘要
本研究以黄渤海地区深远海养殖许氏平鲉(Sebastes schlegelii)为对象,针对其季节性高发的败血性皮肤溃疡症的主要致病原美人鱼发光杆菌美人鱼亚种(Photobacterium damselae subsp. damselae, PDD),采用组织病理、细胞、生理及免疫检测等多种技术方法,从细胞、组织、酶活性及免疫等多个层面,研究了许氏平鲉对 PDD 侵染的响应机制。结果显示,许氏平鲉感染 PDD 后引起肠道、脾脏及肝脏结构病变,血液中白细胞数量显著下降,肝脏的抗氧化性能(SOD、CAT、MDA、 PO 和 MPO)、非特异性免疫性能(LZM、ACP、AKP 和 SIgA)以及消化酶指标(α-AL、PAMY 和 LPS) 规律较好;qRT-PCR 结果显示,感染后的许氏平鲉肠道紧密连接蛋白相关基因(CLDN3CLDN15ZO-1)及抗炎因子基因(IL-10IL-12b)相对表达量均显著下调(P<0.05),肠道炎症因子(IL-8IL-15IL-1β)相对表达量显著上调(P<0.05),相关炎症通路基因(NF-κBp65NLRC3.2MyD88)相对表达量显著下调(P<0.05)。研究表明,许氏平鲉感染 PDD 造成生长和抗氧化性能降低,肠道、肝脏、脾脏组织结构损伤,导致组织病变发生,血液中白细胞数量降低,肠道紧密连接蛋白和抗炎因子基因相对表达量下调,而炎症因子基因相对表达量上调。本研究为建立深远海养殖环境下许氏平鲉的健康评价体系和开发相应的免疫保护技术提供了科学依据。
Abstract

Sebastes schlegelii, a main fish species in the deep-sea cage culture in northern China, is a near-shore cold-water carnivorous fish with low temperature resistance. However, bacterial diseases such as eye rot, bacterial enteritis, and skin ulcer disease emerged with the expansion of breeding scale and increase in breeding density. Photobacterium damselae subsp. damselae (PDD), a gram-negative pathogen widely distributed in the global marine environment, can infect various marine animals, such as S. schlegelii. The pathogenic cases in China's marine aquaculture industry are gradually increasing, and the pathogenic hosts are diversified, which poses a new threat to the healthy development of China's marine aquaculture industry.

In this study, we focused on the deep-sea aquaculture of S. schlegelii in Bohai and studied the effects and mechanisms of S. schlegelii on PDD infection from the levels of cells, tissues, enzyme activity, and immunity based on histopathological, cellular, physiological and immune responses. S. schlegelii individuals with a body weight of (65.02±3.52) g and length of 15–17 cm were taken as the research object. Fish with normal saline injection composed the control group, whereas fish at 3, 5, and 7 days after PDD infection composed the experimental groups (D3, D5, and D7, respectively). Each group had three replicates of 30 fish each. The breeding experiment was carried out for 1 week. Results showed that PDD infection caused structural lesions of the intestine, spleen, and liver, which led to inflammation and oxidative stress. After infection, an inflammatory response occurred in S. schlegelii, and the number of leukocytes significantly decreased, which verified the inflammatory response. PDD significantly affected the antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), malonaldehyde (MDA), fish phenol oxidase (PO), and myeloperoxidase (MPO), non-specific immune performance, such as lysozyme (LZM), acid phosphatase (ACP), alkaline phosphatase (AKP), and secreted immunoglobulin (SIgA), and growth indexes, such as α-amylase (α-AL), amylopsin (PAMY), lipase (LPS) of the liver. The SOD activity in the experimental groups was significantly lower than that in the control group, and the lowest activity was (10.26±0.11) U/g in D3 (P<0.05). The MDA content in D3 and D5 was significantly higher than that in the control group (P<0.05). The CAT activity in the experimental groups was significantly lower than that in the control group (P<0.05), and the maximum decrease in enzyme activity in D3 decreased from (112.90±1.56) U/g to (66.81±1.04) U/g. The activity of PO initially increased and then decreased, and it was significantly higher in D3 than in the control group (P<0.05), reaching (110.01±2.39) U/g. MPO activity showed a unimodal shape, which initially increased and then decreased, and the highest in D5 was significantly different from that in the control group (P<0.05). The maximum LZM activity in D3 was (3.41±0.21) U/mL, which was significantly higher than that in the control group, and showed a unimodal shape (P<0.05). The ACP activity in D5 reached a maximum of (280.23±2.91) U/mL, which was significantly different from that in the control group (P<0.05). The AKP activity in D5 reached the lowest (42.37±1.53 U/mL), which was significantly different from that in the control group (P<0.05). The SIgA activity in D5 reached (47.18±0.93) U/g, and no significant difference was found between D7 and the control group (P>0.05). The trends of α-AL and PAMY initially increased and then decreased, and a significant difference was found between D5 and the control group (P<0.05). The LPS concentration initially decreased and then increased, with the highest (137.48±3.13 U/g) in D5, which was significantly different from that in the control group (P<0.05), and the lowest (111.26±2.64 U/g) in D3. PDD injection significantly affected the intestinal pancreatic amylase, lipase, and α-AL activities of S. schlegelii (P<0.05). It also significantly affected the antioxidant performance, non-specific immune performance, and growth indexes in the liver of S. schlegelii. In addition, the expression levels of 11 mRNA genes related to intestinal immunity changed significantly. Tight junction protein genes (CLDN3, CLDN15, and ZO-1), anti-inflammatory factors genes (IL-10, IL-12b), and inflammatory pathway genes (NF-ĸBp65, NLRC3.2, and MyD88) were significantly down-regulated in the experimental groups (P<0.05); in contrast, intestinal inflammatory cytokines related genes (IL-8, IL-15, and IL-1β) were significantly up-regulated (P<0.05).

In conclusion, PDD infection can reduce the growth and antioxidant performance of S. schlegelii; damage the tissue structures of the intestine, liver, and spleen; cause tissue lesions; downregulate the relative expression of intestinal tight junction protein and anti-inflammatory factor genes; and upregulate the relative expression of inflammatory factor genes. This study may serve as a scientific basis for the health evaluation of S. schlegelii in the deep-sea environment and development of corresponding impressive technologies.

许氏平鲉(Sebastes schlegelii)隶属于鲉形目(Scorpaeniformes)、平鲉科(Sebastidae)、平鲉属(Sebastes),是一种近岸冷水肉食性鱼类,具有耐低温、抗病强的特点,主要分布在我国渤海、黄海、东海以及朝鲜半岛、日本、鄂霍次克海。许氏平鲉是我国北方地区深远海网箱养殖的主要鱼种之一,养殖产业主要集中在山东烟台长岛周边海域,并以深水网箱养殖模式为主。
随着养殖规模的进一步扩张及养殖密度的增加,水体微生态环境失衡导致养殖环境压力增大,水产细菌疾病频繁发生。现阶段发现的许氏平鲉病害主要包括烂眼病、烂鳃病、细菌性肠炎病、皮肤溃疡病等(王凯,2018),主要致病原有美人鱼发光杆菌美人鱼亚种(Photobacterium damselae subsp. damselae,PDD)、哈维氏弧菌(Vibrio harveyi)、荧光假单胞菌(Pseudomonas fluorescens)、迟缓爱德华氏菌(Edwardsiella tarda)等多种细菌。
美人鱼发光杆菌美人鱼亚种(PDD)是一种在全球海洋环境中广泛分布的革兰氏阴性病原菌,该菌于 1981 年首次分离自雀鲷科(Pomacentridae)鱼类斑鳍光鳃鱼(Chromis notatus)体表溃疡处,最初被命名为 Vibrio damselLove et al,1981),可感染许氏平鲉(Zhang et al,2019)、凡纳对虾(Penaeus vannamei)(Wang et al,2024)、海豚(Tursiops truncatus)(Zhou et al,2024)、虹鳟(Oncorhynchus mykiss)(Battistini et al,2024)、尖吻鲈(Lates calcarifer)(Weawsawang et al,2024)等多种海洋动物。PDD 感染的鱼类最常见的症状是皮肤损伤和溃烂,这种溃烂在胸鳍和尾柄处尤为明显。目前,PDD 在我国海水养殖产业的致病案例逐渐增多,且致病宿主多样化,对我国海水养殖行业的健康发展造成了新的威胁。
前期流行病学调查表明,PDD 是导致渤海深远海网箱养殖的许氏平鲉在高温季节发生鳍基出血、皮肤溃疡等临床症状的主要致病菌(Zhang et al,2019),具有致病性强、发病速度快、致死率高的显著特点,且无明显的宿主特异性,给水产养殖业造成了巨大的经济损失(Li et al,2022)。但作为季节性病害,在明确其病原特征后,PDD 感染导致的许氏平鲉炎症及其他生理反应一直缺乏系统性分析。基于此,本研究拟通过感染学方法,观察组织病理学变化,测定免疫相关酶活性和氧化应激指标,以及紧密连接蛋白基因(CLDN3CLDN15ZO-1)、抗炎因子基因(IL-10 IL-12b)、肠道炎症因子(IL-8IL-15IL-1β),相关炎症信号通路基因(NF-κBp65NLRC3.2MyD88)的 mRNA 表达,解析许氏平鲉 PDD 感染后的炎症反应特征。相关研究结果可为建立深远海网箱养殖许氏平鲉健康评估方法及开发炎症消减技术奠定基础。
1 材料与方法
1.1 实验材料及人工感染实验
实验采用的菌株 PDD1608 现存于中国水产科学研究院黄海水产研究所海水养殖病原菌株库,该菌株在前期工作中已被证实对许氏平鲉、大菱鲆(Scophthalmus maximus)等多种海水养殖动物具有高致病性(刘潇等,2021)。
在进行人工感染实验时,选择外观(如体表、鳍条、眼睛和体色)无损伤、无特定病原(PDD 和哈维氏弧菌),以及行为习性(如游动和摄食)积极正常的健康许氏平鲉作为实验对象。初始体重为(65.02±3.52)g,体长为 15~17 cm,购自山东省日照市某养殖场。取健康许氏平鲉 200 尾暂养于实验桶内,养殖水体为 300 L,水温为(12±1)℃,溶氧大于 6 mg/L,pH 为 7.6~8.2,氨氮和亚硝酸氮质量浓度均小于 0.1 mg/L。适应 7 d 后进行人工感染实验。
实验共分为 5 组,每组 30 尾,组别分配为对照组 1 组和实验样品采集组 3 组,实验组统计死亡率 1 组。PDD 在 TSB 液体培养基中培养 24 h 后,离心收集菌体并用无菌 PBS 清洗 3 次,再用 1.5% NaCl 溶液对菌体进行重悬和梯度稀释后,制成浓度为 1×105 CFU/mL 的菌液。参考前期测定的 PDD1608 对许氏平鲉的 LD50 数值(刘定远等,2024),本研究以每尾鱼腹腔注射 0.1 mL 菌液进行感染实验,对照组注射等量的无菌 PBS 缓冲液。每日观测许氏平鲉的死亡及患病情况。
1.2 样品采集与处理
在实验第 0、3、5、7 天进行样品采集,分别标记为 D0、D3、D5、D7 组。每组随机捕捞许氏平鲉 6 尾,用麻醉剂(MS-222,100 mg/L)麻醉后置于解剖盘上进行尾静脉采血,采集于含有 TBDTM 细胞分离专用抗凝剂的抗凝管中低温保存,随后用无菌解剖工具取出肠道、肝脏和脾脏。血液样品利用流式细胞仪进行白细胞数量检测,组织样品置于无菌冻存管中经液氮速冻后保存于–80℃冰箱。
1.3 组织病理学观察
分别取健康与患病许氏平鲉的肝、脾和肠道组织,切成适当大小的组织块后用 Davidson′s 固定液固定。固定好的组织经脱水、浸蜡、包埋、切片、脱蜡、洗脱后,苏木精–伊红染色、中性树脂封片,之后置于显微镜下采集照片并观察分析。
1.4 酶活性测定
实验共检测 9 种酶活性,从 3 个方面进行评估,包括肝脏抗氧化酶类:超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、鱼酚氧化酶(PO)、过氧化物酶(MPO); 非特异性免疫性酶类:溶菌酶(LZM)、酸性磷酸酶(ACP)、碱性磷酸酶(AKP);生长消化酶类:α-淀粉酶(α-AL)、胰淀粉酶(PAMY)和脂肪酶(LPS)。另检测丙二醛(MDA)作为氧化损伤指标,鱼分泌型免疫球蛋白 A(SIgA)作为免疫指标。检测试剂盒购自南京建成生物技术有限公司,相关操作按试剂盒说明书进行。
1.5 白细胞计数
于无菌条件下采集许氏平鲉尾静脉血 1 mL,采用鱼全血白细胞分离液试剂盒(天津灏洋华科生物科技有限公司,货号:WBC1080F)进行白细胞分离,全过程样本、试剂及实验操作均在(20±2)℃的温度条件下进行。将样本放入样品管内,利用 The BD FACS Aria™ I/II CellSorter 流式细胞仪(BD Biosciences)进行上机检测,在完成对细胞的吸获后,利用系统分析软件进行数据处理,设置横坐标为前向角散射光,纵坐标为侧向角散射光,设置白细胞的纳入范围,得出白细胞亚群绝对值计数。
1.6 炎症相关基因的实时荧光定量 PCR 检测
将许氏平鲉肠组织进行液氮研磨处理,利用 FastPureCell/Tissue Total RNA Isolation KitV2 试剂盒提取肠道组织 RNA,检测 RNA 提取浓度及纯度,再使用反转试剂盒 HiScript Ⅲ RT Super Mix for qPCR(+gDNAwiper)合成 cDNA。随后进行功能基因的实时荧光定量 PCR(qRT-PCR)扩增,反应程序: 95℃ 30 s,95℃ 10 s,60℃ 30 s,共进行 40 个循环,每个循环结束时收集荧光信号。以核糖体蛋白 RPL17 作为内参基因,通过 qRT-PCR 对许氏平鲉肠道紧密连接蛋白、抗炎因子及促炎因子进行定量分析,按照 2–∆∆Ct 计算目的基因相对表达量,引物序列见表1
1许氏平鲉相关基因引物序列
Tab.1Primers for S. schlegelii used in this study
1.7 数据分析
所有数据采用 SPSS 18.0 进行单因素方差分析(one-way ANOVA),用 Duncan’s 检验进行多重比较。统计数据以平均值±标准差(Mean±SD)表示,采用 2–ΔΔCt 的方法进行数据分析,通过 GraphPad Prism9.5.1 软件应用 T-test 方法进行显著性差异计算。数据分析结果若 P<0.05,则表示具有显著性差异。
2 结果与分析
2.1 PDD 对许氏平鲉的致病性及组织病变特征
感染实验共进行 7 d,以注射结束后 24 h 计为 1 d,随后开始发现死亡,7 d 累计死亡率为 30%(图1)。人工感染后的许氏平鲉活力和运动性下降。尾鳍、腹鳍以及胸鳍出血,腹部红肿,后续出现溃烂症状,感染结果与自然发病症状一致,表明许氏平鲉 PDD 感染模型可重复,适宜用于炎症反应分析。
组织病理分析表明,与正常许氏平鲉相比,患病许氏平鲉的肠、肝、脾均表现出明显的病理变化,有典型的肉芽肿并伴有脂肪变性、炎性细胞浸润等现象,证实了 PDD 感染导致的炎症反应。健康许氏平鲉肠道结构紧密(图2A),患病许氏平鲉肠道病变较为明显,表现为充血,肠绒毛细胞坏死、脱落,大量炎性细胞浸润,黏液细胞附着(图2B);患病许氏平鲉肠道肌肉层松弛,注射菌液浓度为 1×105 CFU/mL 的实验组,感染 3 d 肌肉层和黏膜层中有大量的红细胞聚集,肠绒毛和肠黏膜组织腐烂并脱落。健康许氏平鲉肝脏细胞完整、排列紧密(图2C),患病许氏平鲉肝脏细胞间界限模糊,肝细胞萎缩,呈明显空泡化,细胞核变大,胞内物质颜色加深(图2D)。健康许氏平鲉脾脏细胞排列紧密(图2E),患病许氏平鲉脾脏细胞发生离散(图2F),细胞出现空泡、变性,细胞核裂解,红细胞发生坏死。正常脾脏含有脾髓,有淋巴细胞、巨噬细胞和各类粒细胞等,显示有红细胞集中区域和淋巴细胞集中区域。
1许氏平鲉存活率
Fig.1Survival rate of S. schlegelii after PDD infection
致病性与组织病理分析表明,人工感染实验可以复现 PDD 自然感染病例的典型症状,同时证明 PDD 侵染可引起许氏平鲉组织器官出现免疫和炎症反应。
2.2 PDD 感染对许氏平鲉肝脏消化酶的影响
表2可知,感染 PDD 显著影响了许氏平鲉肝脏胰淀粉酶、脂肪酶和 α-淀粉酶活性(P<0.05)。α-淀粉酶和胰淀粉酶活性的变化趋势都先升高后降低,实验组 D5 与对照组相比差异显著(P<0.05);脂肪酶活性变化呈先下降后上升的趋势,实验组 D5 最高达到(137.48±3.13)U/g,与对照组相比差异显著(P<0.05),实验组 D3 最低为(111.26±2.64)U/g。
2PDD 感染许氏平鲉后的组织病理变化
Fig.2Histopathological changes after S. schlegelii infection with PDD
A:正常许氏平鲉肠道;B:患病许氏平鲉肠道(肠绒毛坏死、脱落);C:正常许氏平鲉肝脏; D:患病许氏平鲉肝脏(细胞排列疏松、空泡明显);E:正常许氏平鲉脾脏;F:患病许氏平鲉脾脏(组织结构松散)。
A: Intestine of healthy fish; B: Intestine of diseased fish (intestinal villus cells necrosis and shedding) ; C: Liver of healthy fish; D: Liver of diseased fish (loose cell arrangement and prominent vacuolation) ; E: Spleen of healthy fish; F: Spleen of diseased fish (loose tissue structure) .
2PDD 感染对许氏平鲉肝脏消化酶活性的影响/(U/g)
Tab.2Effects of PDD on digestive enzyme activities in S. schlegelii liver/ (U/g)
注:同行数据肩标相同小写字母或无字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。下同。
Note: Data with the same lowercase letter superscript or no letters in the same row are not significantly different (P>0.05) , while data with different lowercase letters are significantly different (P<0.05) , the same below.
2.3 PDD 感染对许氏平鲉抗氧化性能的影响
表3可知,随着许氏平鲉感染 PDD 后的时间推移,许氏平鲉的肝脏抗氧化性能出现显著差异。实验组 SOD 活性显著低于对照组,最低为 D3 组,SOD 活性为(10.26±0.11)U/g(P<0.05)。实验组 D3 和 D5 组 MDA 含量显著高于对照组(P<0.05),D7 组与对照组差异不显著(P>0.05),总体趋势呈单峰形状。实验组 CAT 活性下降,显著低于对照组(P<0.05),D3 组下降幅度最大,酶活性由(112.90±1.56)U/g 下降到(66.81±1.04)U/g;PO 酶活性先升高再下降,在 3 d 时达到(110.01±2.39)U/g,活性显著高于对照组(P<0.05)。MPO 酶活性先升高后降低,呈单峰形, D5 组达到最高值(6.83±0.23)U/g,与对照组差异显著(P<0.05)。
3PDD 感染对许氏平鲉抗氧化性能的影响
Tab.3Effect of PDD on antioxidant indexes in S. schlegelii liver
2.4 PDD 对许氏平鲉肝脏非特异性免疫酶活性的影响
表4可知,D3 实验组肝脏的 LZM 活性达到最高,为(3.41±0.21)U/mL,显著高于对照组,呈单峰形(P<0.05);ACP 活性在感染后 5 d 时最高,达到(280.23±2.91)U/mL,与对照组差异显著(P<0.05);在感染 5 d 时实验组 AKP 活性达到最低,为(42.37± 1.53)U/mL,与对照组差异显著(P<0.05);SIgA 活性在感染后 5 d 时最高,达到(47.18±0.93)U/g,实验组 D7 与对照组差异不显著(P>0.05)。
4PDD 感染对许氏平鲉非特异性免疫性能的影响
Tab.4Effect of PDD on non-specific immune performance in S. schlegelii liver
2.5 PDD 感染对许氏平鲉血液白细胞数量的影响
采用流式细胞仪对许氏平鲉尾静脉血进行白细胞检测,全外周血用前向散射光面积(forward scatter area,FSC-A)对侧向散射光面积(side scatter area,SSC-A)设门,如图3所示,据此进行细胞定量。由表5可知,实验组许氏平鲉尾静脉血液中白细胞数量极显著低于对照组,最低白细胞数量为(20 800±117)个(P<0.001),随着时间推移,炎症抑制反应有上升趋势, 7 d 白细胞数量增加至(26 189±167)个。
2.6 PDD 感染对许氏平鲉肠道紧密连接蛋白基因表达量的影响
组织损伤结果表明,感染 PDD 后导致许氏平鲉肠黏膜发生病理变化。肠道紧密连接通透性决定肠道黏膜屏障的功能,跨膜蛋白[如闭锁蛋白(occludin)和闭合蛋白(claudin)]以及胞质蛋白(如 ZO-1)构成紧密连接的复杂蛋白质结构,ZO-1 通过氨基端的 PDZ 结构域和 occludin、claudin 直接连接,在紧密连接的结构组成中发挥重要作用(孔瑶瑶等,2020)。由图4可见,相较于对照组 C,实验组 D3 的 CLDN3 相对表达量显著下调(P<0.05),实验组 D5 与对照组存在极显著差异(P<0.001),实验组 D7 与对照组存在显著下调(P<0.05)。实验组 ZO-1 相对表达量与对照组极显著下调(P<0.001),实验组 D3、D5 和 D7 组 CLDN15 相对表达量显著低于对照组(P<0.01),呈先下降后上升再下降的趋势,实验组 D3 与对照组 C 存在极其显著差异(P<0.000 1)。本实验研究了 3 种紧密连接蛋白基因,其相对表达量均受到影响,表明 PDD 感染显著下调了 3 个基因的相对表达量,损害了许氏平鲉肠黏膜屏障。
3许氏平鲉血液白细胞数量变化
Fig.3Variation of leukocytes quantities in the blood of S. schlegelii
a 为健康许氏平鲉血液中去除粘连体后白细胞的分布情况,占比为 96.4%; b~d 分别为感染 3、5、7 d 后许氏平鲉血液中去除粘连体后白细胞的分布情况,占比分别为 90.8%、91.3%、94.6%。
a: Distribution of leukocytes (white blood cells, WBCs) in the blood of healthy S. schlegelii after the removal of adherent bodies, with an accounting proportion of 96%; b–d: Distributions of leukocytes (WBCs) in the blood of S. schlegelii at 3, 5, and 7 days post-infection respectively, after the removal of adherent bodies, accounted for 90.8%, 91.3%, and 94.6%, respectively.
5血液白细胞数量
Tab.5Blood leukocyte count of S. schlegelii
注:与对照组相比,*为具有统计学差异(P<0.05);**为具有显著性差异(P<0.01);***为具有极显著差异(P<0.001)。
Note: Compared with the control group, * indicates statistical significance (P<0.05) , ** indicates significant difference (P<0.01) , and *** indicates highly significant difference (P<0.001) .
4PDD 对许氏平鲉肠道紧密连接蛋白基因表达量的影响
Fig.4Effects of PDD on intestinal tight-junction protein gene expression in S. schlegelii
与对照组相比,*为具有统计学差异(P<0.05);**为具有显著性差异(P<0.01);***为具有极显著差异(P<0.001),**** 为具有极其显著的差异(P<0.000 1),下同。
Compared with the control group, * indicates statistical significance (P<0.05) , ** indicates significant difference (P<0.01) , *** indicates highly significant difference (P<0.001) , and **** indicates an extremely significant difference (P<0.000 1) . The same below.
2.7 PDD 感染对许氏平鲉肠道炎症因子和抗炎因子基因及相关炎症通路表达量的影响
鱼类肠黏膜免疫状态与炎症反应密切相关,肠黏膜受损会引起通透性增加,细菌、毒素等会激活肠黏膜淋巴组织,引发免疫反应并释放大量促炎因子, IL-1ΒIL-8IL-12bIL-15 是肠道免疫的重要调节因子,在黏膜损伤或炎症反应中起着关键作用(Wang et al,2017)。由图5可见,PDD 感染后各实验组许氏平鲉肠道促炎因子 IL-1βIL-8 的相对表达量上调,呈先上升后下降的趋势并显著高于对照组(P<0.01), IL-8 相对表达量 D7 组与对照组 C 差异显著(P<0.05); 实验组 D3 与实验组 D5 促炎因子 IL-15 相对表达量极显著高于对照组(P<0.001),且 D3 与 D5 差异显著(P<0.05)。感染 PDD 各实验组抗炎因子 IL-10 相对表达量显著低于对照组(P<0.05),且 D5 组高于 D3 组。 D3 和 D7 实验组抗炎因子 IL-12b 相对表达量显著低于对照组 C(P<0.05),D5 组与 D7 组差异不显著(P>0.05)。NOD 样受体(NLR)是一大类胞质家族蛋白,属于模式识别受体(PRR),它通过检测病原体相关的分子模式(PAMP)并调节免疫相关途径来发挥自身免疫活性(Cao et al,2021)。核因子 κB(NF-κB)及 MyD88 是炎症和细胞死亡的主要调节因子(Pradère et al,2016)。NF-κBp65NLRC3.2 呈现先升高后降低再升高的趋势,其中实验组 D3 与对照组差异极显著(P<0.001)。MyD88 相对表达量呈上升趋势,且实验组 D5、D7 与对照组 C 差异显著(P<0.05)。表明 PDD 感染通过上调促炎因子表达和下调抗炎因子表达水平,引起许氏平鲉肠道的炎症反应。
3 讨论
通过感染模型可知,PDD 感染对许氏平鲉的组织产生了不同程度的破坏。肠道结构的完整性与肠道吸收能力密切相关(王晓艳等,2024)。患病许氏平鲉肝脏细胞坏死,轮廓消失,细胞质膜崩解,细胞核固缩;肠道组织结构严重受损,细胞排列稀疏,黏膜层细胞坏死,细胞质嗜碱性粒细胞增多,肠褶皱消失;脾脏组织细胞发生离散,出现空泡变性,细胞核裂解,红细胞坏死。这些病理变化与 Chuchird 等(2024)Yan 等(2025)研究发现的 PDD 对凡纳对虾、鱼导致的机体组织病理变化相似。表明 PDD 对许氏平鲉具有较强的致病性,患病许氏平鲉机体组织均出现不同程度的病理变化,进而引发相关炎症反应。
5PDD 对许氏平鲉肠道炎症因子(a)、抗炎因子(b)和通路基因(c)表达量的影响
Fig.5Effects of PDD on the expression of intestinal inflammatory (a) , anti-inflammatory (b) , and pathway (c) factors in S. schlegelii
血细胞变化可以作为病原毒性效应的重要参考指标。本研究测定了 4 个不同时间点 PDD 感染对许氏平鲉血液组成的影响。结果发现,健康许氏平鲉的白细胞为(32.11±6.54×103)个/μL,与舌齿鲈(Dicentrarchus labrax)相似,高于黑虎鱼(Gobius niger),但低于金鲷(Dicentrarchus labrax)(Fazio et al,2013)。然而,与对照组比较,许氏平鲉在感染 PDD 后,血液中的白细胞数量显著降低(P<0.01),这表明 PDD 感染对许氏平鲉产生的影响可反映在其血液细胞组成上,其中白细胞数量下降尤为直观。通过比较白细胞数量发现,许氏平鲉感染 PDD 后的第 3 天表现出最强的炎症反应。该结果与鲶(Silurus asotus)感染迟缓爱德华氏菌后的白细胞数量变化结果相似(Yu et al,2010),有助于揭示不同鱼类在面对病原体时免疫反应的共性和差异,可以更深入地理解 PDD 对许氏平鲉免疫系统的影响机制。当体内自由基、活性氧(ROS)产生过量时,会激活抗氧化系统以消除过量的自由基及活性氧,包括细胞产生的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)等抗氧化酶,它们是评估外源性化合物产生氧化应激的重要生物标志物,而丙二醛(MDA)是生物体内脂质氧化的终产物,具有细胞毒性,能间接反映机体是否存在氧化损伤。在 PDD 感染下,抗氧化酶活性整体上受到显著抑制,这可能是由于许氏平鲉感染 PDD 后,机体消耗自身酶促物质以消除多余的活性氧,导致 SOD 和 CAT 活性降低,MDA 活性增加,进而产生机体损伤。鱼体消化酶活性反应机体消化吸收和营养利用的能力(Zambonino et al,2001),与许氏平鲉的生长息息相关。而溶菌酶(LZM)、酸性磷酸酶(ACP)、分泌型免疫球蛋白A(SIgA)及碱性磷酸酶(AKP)是鱼类重要的非特异性免疫指标,其酶活性显著降低揭示了 PDD 感染导致许氏平鲉的抗病力显著降低。胰淀粉酶(PAMY)属于 α-淀粉酶的一种,脂肪酶(LPS)、溶菌酶(LZM)等在肝脏中免疫相关的酶活性有不同程度的上升和下降,且感染前显著高于感染后,在感染后 3~5 d 时达到最高值。这可能是因为 PDD 感染后,机体为调整应对 PDD 的侵染,会通过调整包括溶菌酶等在内的多种酶的表达,从而引发相应的生理变化。
肠道紧密连接的通透性决定整个肠道屏障的功能,细胞间的低效连接是肠病发生的直接原因(Al-Sadi et al,2011),决定肠道黏膜屏障的功能跨膜蛋白,如 Occludin、Claudin 以及胞质蛋白(如 ZO-1)(Stevenson et al,1986)构成紧密连接的复杂蛋白质结构(孔瑶瑶等,2020)。对珍珠龙胆石斑鱼(Epinephelus lanceolatu♀×Epinephelus fuscoguttatus♂)的研究表明,紧密连接相关基因 occludinCLND15aZO-1 在前、中、后肠的表达量都较高,提示它们在维护肠道黏膜屏障功能上的关键作用(Kuo et al,2022)。PDD 作为病原菌,可能主要通过损害肠道黏膜屏障功能来增加肠道疾病的风险,通过降低 CLDN15CLDN3 基因表达水平,减少与 ZO-1 对紧密连接“锁扣”结构的“闭合”调控,从而造成肠黏膜屏障功能下降,导致肠道紧密连接蛋白表达异常。本研究发现,PDD 感染后,许氏平鲉肠道中的 CLDN3CLDN15ZO-1 三种紧密连接蛋白基因的相对表达量均受到负面影响。CLDN15CLDN3 基因表达水平的降低减少了 ZO-1 对紧密连接“锁扣”结构的“闭合”调控,导致肠黏膜屏障功能下降,相关结果与组织病理分析结果一致。
鱼类肠道黏膜免疫水平与炎症反应密切相关。肠黏膜受损会引起通透性增加,细菌、毒素等会激活肠黏膜淋巴组织,进而引发免疫反应并释放大量炎症因子。IL-1βIL-8IL-12bIL-15 是肠道免疫的重要调节因子,在黏膜损伤或感染反应中发挥关键作用(Al-Sadi et al,2011)。研究结果显示,感染 PDD 后,许氏平鲉肠道促炎因子的表达量显著上调,抗炎因子表达量显著降低。各实验组炎症反应程度与 IL-1βIL-8IL-15 表达水平成正相关,与 IL-12bIL-10 表达水平呈负相关,提示 PDD 可通过提高促炎因子水平和降低抗炎因子水平来增加肠道炎症反应。与之类似,军曹鱼(Rachycentron canadum)感染停乳链球菌(Streptococcus dysgalactiae)(Nguyen et al,2017)、金鲳(Trachinotus ovatus)感染哈维氏弧菌和无乳链球菌(Streptococcus agalactiae)(Wu et al,2019),大盖巨脂鲤(Colossoma macropomum)感染嗜水气单胞菌(Aeromonas hydrophila)(Gallani et al,2021)也表现出相似的反应趋势。
免疫反应释放的大量促炎因子会影响肠上皮细胞对营养物质的吸收和对离子的转运。有研究表明, IL-1β 等促炎因子能够抑制紧密连接蛋白基因的表达,与本研究结果相一致,推测 PDD 通过提高促炎因子的表达,从而降低细胞间紧密连接蛋白合成,减弱许氏平鲉上皮细胞间的物理屏障功能。NOD 样受体信号通路相关的基因 MyD88NF-κBp65 NLRC3.2 在许氏平鲉感染 PDD 后体内表达显著上调。这与钝吻鲷(Megalobrama amblycephala)感染嗜水气单胞菌的结果相似(Tran et al,2015),斑石鲷(Oplegnathus punctatus)腹腔注射鳗弧菌(Vibrio anguillarum)后也出现相同的结果(Liu et al,2019)。许氏平鲉体内上述基因的表达上调,表明其下游启动子将被激活,以产生剧烈的免疫反应。研究结果表明,许氏平鲉感染 PDD 后,炎症反应导致肠黏膜上皮细胞间紧密连接蛋白和抗炎因子表达水平下降,炎性因子表达水平升高,进而引发肠黏膜损伤及炎症反应。肠黏膜上皮细胞紧密连接结构的破坏也可部分归因于炎症因子的高表达(Gu et al,2018)。本研究结果为进一步探讨许氏平鲉感染 PDD 后的免疫机制、建立许氏平鲉抗菌免疫评估模型提供了参考。
4 结论
本研究以许氏平鲉为实验对象,探究了 PDD 侵对许氏平鲉生化指标、组织学、免疫相关基因的影响,明晰了许氏平鲉感染 PDD 后血液白细胞指标以及免疫相关基因应答的影响,为许氏平鲉的健康评估、疾病诊断和免疫防控研究提供了基础数据。在确证 PDD 对许氏平鲉致病性的基础上,从细胞水平、免疫酶活性、基因表达等多方面综合评估了 PDD 侵染后许氏平鲉的生理应答状态。明确了 PDD 侵染会造成许氏平鲉血液中白细胞数量显著下降,并在感染 1 周时间内发生较强的炎症反应;相关免疫酶活性表达量发生显著变化,表明感染 PDD 后,许氏平鲉机体通过表达产生相应酶类进而参与炎症反应;证实了肠道紧密连接蛋白基因、炎症因子以及抗炎因子可作为评估许氏平鲉感染细菌性病原的指示因子。
1许氏平鲉存活率
Fig.1Survival rate of S. schlegelii after PDD infection
2PDD 感染许氏平鲉后的组织病理变化
Fig.2Histopathological changes after S. schlegelii infection with PDD
3许氏平鲉血液白细胞数量变化
Fig.3Variation of leukocytes quantities in the blood of S. schlegelii
4PDD 对许氏平鲉肠道紧密连接蛋白基因表达量的影响
Fig.4Effects of PDD on intestinal tight-junction protein gene expression in S. schlegelii
5PDD 对许氏平鲉肠道炎症因子(a)、抗炎因子(b)和通路基因(c)表达量的影响
Fig.5Effects of PDD on the expression of intestinal inflammatory (a) , anti-inflammatory (b) , and pathway (c) factors in S. schlegelii
1许氏平鲉相关基因引物序列
Tab.1Primers for S. schlegelii used in this study
2PDD 感染对许氏平鲉肝脏消化酶活性的影响/(U/g)
Tab.2Effects of PDD on digestive enzyme activities in S. schlegelii liver/ (U/g)
3PDD 感染对许氏平鲉抗氧化性能的影响
Tab.3Effect of PDD on antioxidant indexes in S. schlegelii liver
4PDD 感染对许氏平鲉非特异性免疫性能的影响
Tab.4Effect of PDD on non-specific immune performance in S. schlegelii liver
5血液白细胞数量
Tab.5Blood leukocyte count of S. schlegelii
AL-SADI R, KHATIB K, GUO S H, et al. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology Gastrointestinal and Liver Physiology, 2011, 300(6): G1054-G1064
BATTISTINI R, MASOTTI C, GIORDA F, et al. Photobacterium damselae subsp. damselae in stranded cetaceans: A 6-year monitoring of the Ligurian Sea in Italy. Animals, 2024, 14(19): 2825
CAO M, YAN X, LI Q, et al. Genome-wide identification and analysis of NOD-like receptors and their potential roles in response to Edwardsiella tarda infection in black rockfish (Sebastes schlegelii). Aquaculture, 2021, 541: 736803
CHUCHIRD N, CHONGPRACHAVAT N, SUANPLOY W, et al. Investigation of pale shrimp disease in Pacific white shrimp (Litopenaeus vannamei) caused by Photobacterium damselae subsp. damselae in low salinity culture conditions. Aquaculture Reports, 2024, 39: 102416
FAZIO F, MARAFIOTI S, ARFUSO F, et al. Comparative study of the biochemical and haematological parameters of four wild Tyrrhenian fish species. Veterinární Medicína, 2013, 58(11): 576-581
GALLANI S U, VALLADÃO G M R, DE OLIVEIRA ALVES L, et al. Patterns of the innate immune response in tambaqui Colossoma macropomum: Modulation of gene expression in haemorrhagic septicaemia caused by Aeromonas hydrophila. Microbial Pathogenesis, 2021, 150: 104638
GU M, JIA Q, ZHANG Z Y, et al. Soya-saponins induce intestinal inflammation and barrier dysfunction in juvenile turbot (Scophthalmus maximus). Fish & Shellfish Immunology, 2018, 77: 264-272
KONG Y Y, MA X H, MAI K S, et al. Research progress of effects of diet nutrients on intestinal tight junction protein zonula occludens-1 of fish. Chinese Journal of Animal Nutrition, 2020, 32(11): 5081-5088[孔瑶瑶, 马秀华, 麦康森, 等. 饲料营养素对鱼类肠道紧密连接蛋白闭锁小带蛋白-1影响的研究进展. 动物营养学报, 2020, 32(11): 5081-5088]
KUO W T, ODENWALD M A, TURNER J R, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Annals of the New York Academy of Sciences, 2022, 1514(1): 21-33
LI M F, WU M, SUN Y Y, et al. Edwardsiella tarda TraT is an anti-complement factor and a cellular infection promoter. Communications Biology, 2022, 5: 637
LIU D Y, WANG C Y, YU Y X, et al. Construction and biological characteristics of the dly-deleted mutant strain of Photobacterium damselae subsp. damselae. Progress in Fishery Sciences, 2024, 45(3): 182-192[刘定远, 王春元, 于永翔, 等. 美人鱼发光杆菌美人鱼亚种dly基因缺失株构建及其生物学特性研究. 渔业科学进展, 2024, 45(3): 182-192]
LIU X B, LI X M, DU X X, et al. Spotted knifejaw (Oplegnathus punctatus) MyD88: Intracellular localization, signal transduction function and immune responses to bacterial infection. Fish & Shellfish Immunology, 2019, 89: 719-726
LIU X, ZHANG Z, WANG L F, et al. Phenotypic and genetic diversity of Photobacterium damsela subsp. damsela isolated from aquatic animals in Hainan Province and Bohai Sea region. Acta Microbiologica Sinica, 2021, 61(7): 2101-2111[刘潇, 张正, 王丽芳, 等. 海南地区与环渤海湾美人鱼发光杆菌美人鱼亚种水产动物分离株的表型与遗传特征分析. 微生物学报, 2021, 61(7): 2101-2111]
LOVE M, TEEBKEN-FISHER D, HOSE J E, et al. Vibrio damsela, a marine bacterium, causes skin ulcers on the damselfish Chromis punctipinnis. Science, 1981, 214(4525): 1139-1140
MADHURANGA W S P, THARUKA M D N, YANG H, et al. Molecular expression analysis and characterization of rockfish (Sebastes schlegelii) B cell activating factor. Comparative Biochemistry and physiology Part B. Biochemistry and Molecular Biology, 2020, 250: 110480.
MA L M, WANG W J, LIU C H, et al. Selection of reference genes for reverse transcription quantitative real-time PCR normalization in black rockfish (Sebastes schlegeli). Marine Genomics, 2013, 11: 67-73
NGUYEN T T T, NGUYEN H T, WANG P C, et al. Identification and expression analysis of two pro-inflammatory cytokines, TNF-α and IL-8, in cobia (Rachycentron canadum L.) in response to Streptococcus dysgalactiae infection. Fish & Shellfish Immunology, 2017, 67: 159-171
PRADÈRE J P, HERNANDEZ C, KOPPE C, et al. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Science Signaling, 2016, 9(442): ra85
STEVENSON B R, SILICIANO J D, MOOSEKER M S, et al. Identification of ZO-1: A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. The Journal of Cell Biology, 1986, 103(3): 755-766
TRAN N T, LIU H, JAKOVLIĆ I, et al. Blunt snout bream (Megalobrama amblycephala) MyD88 and TRAF6: Characterisation, comparative homology modelling and expression. International Journal of Molecular Sciences, 2015, 16(4): 7077-7097
WANG K. Epidemiology, etiology and histopathology of black rockfish (Sebastes schlegelii) major diseases in Changdao County offshore cage. Master’s Thesis of Shanghai Ocean University, 2018[王凯. 长岛地区深水网箱养殖许氏平鲉主要疾病的流行病学调查与病原病理学研究. 上海海洋大学硕士研究生学位论文, 2018]
WANG L B, XU Q W, YU Z J, et al. Transcriptomic analysis provides insights into the energetic metabolism and immune responses in Litopenaeus vannamei challenged by Photobacterium damselae subsp. damselae. Fishes, 2024, 9(9): 350
WANG X Y, LI B S, SUN Y Z, et al. The repairing effect of arginine on soybean meal-induced enteritis of Sebastes schlegelii. Progress in Fishery Sciences, 2024, 45(3): 76-86[王晓艳, 李宝山, 孙永智, 等. 精氨酸对许氏平鲉豆粕型肠炎的修复作用研究. 渔业科学进展, 2024, 45(3): 76-86]
WANG Y R, WANG L, ZHANG C X, et al. Effects of substituting fishmeal with soybean meal on growth performance and intestinal morphology in orange-spotted grouper (Epinephelus coioides). Aquaculture Reports, 2017, 5: 52-57
WEAWSAWANG W, HOMSOMBAT T, NUANMANEE S, et al. Characterization of Photobacterium damselae subsp. damselae isolated from diseased Asian seabass (Lates calcarifer) and the preliminary development of a formalin-killed cell vaccine. Journal of Fish Diseases, 2024, 47(10): e13987
WU Y, ZHOU Y C, CAO Z J, et al. Comparative analysis of the expression patterns of IL-1β, IL-11, and IL-34 in golden pompano (Trachinotus ovatus) following different pathogens challenge. Fish & Shellfish Immunology, 2019, 93: 863-870
YAN K H, ZHANG Y Y, LI Y B, et al. Immune response of silver pomfret (Pampus argenteus) CC chemokine ligand gene family to Photobacterium damselae subsp. damselae and Nocardia seriolae infections. Journal of Fish Diseases, 2025, 48(1): e14032
YU J H, HAN J J, PARK S W. Haematological and biochemical alterations in Korean catfish, Silurus asotus, experimentally infected with Edwardsiella tarda. Aquaculture Research, 2010, 41(2): 295-302
ZAMBONINO INFANTE J L, CAHU C L. Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2001, 130(4): 477-487
ZHANG Z, YU Y X, WANG K, et al. First report of skin ulceration caused by Photobacterium damselae subsp. damselae in net-cage cultured black rockfish (Sebastes schlegeli). Aquaculture, 2019, 503: 1-7
ZHAO Y, WANG C R, YANG T Y, et al. Chlorogenic acid alleviates chronic stress-induced intestinal damage by inhibiting the P38MAPK/NF-κB pathway. Journal of Agricultural and Food Chemistry, 2023, 71(24): 9381-9390
ZHOU D D, ZHANG B Z, DONG Y C, et al. Coinfection of cage-cultured spotted sea bass (Lateolabrax maculatus) with Vibrio harveyi and Photobacterium damselae subsp. piscicida associated with skin ulcer. Microorganisms, 2024, 12(3): 503