涠洲岛石蚝闭壳肌营养成分分析与品质评价
doi: 10.3969/j.issn.2095-9869.20250124001
马培振1,2 , 陈默3,4 , 梁彬兰3,4 , 周于娜5 , 李鹏飞6,7 , 李翔伦1,2 , 吴彪1,2
1. 海水养殖生物育种与可持续产出全国重点实验室 中国水产科学研究院黄海水产研究所 山东 青岛 266071
2. 青岛海洋科技中心海洋渔业科学与食物产出过程功能实验室 山东 青岛 266237
3. 广西科学院广西海洋科学院广西近海海洋环境科学重点实验室 广西 南宁 530007
4. 广西科学院广西海洋科学院广西水生生物联合实验室 广西 南宁 530007
5. 广西涠洲岛珊瑚礁国家级海洋公园管理站 广西 北海 536000
6. 广西科学院广西海洋科学院广西水产生物技术与现代生态养殖重点实验室 广西 南宁 530007
7. 广西科学院广西海洋科学院广西壮族自治区渔业重大疫病防控与高效健康养殖产业技术工程研究中心 广西 南宁 530007
基金项目: 国家重点研发计划(2023YFD2401002)、广西科学院广西水产生物技术与现代生态养殖重点实验室开放课题 (GXABMEC202401)和广西科技基地和人才专项(桂科 AD24010009)共同资助
Nutritional Composition and Quality of the Adductor Muscles of Stone Oyster on Weizhou Island
MA Peizhen1,2 , CHEN Mo3,4 , LIANG Binlan3,4 , ZHOU Yu’na5 , LI Pengfei6,7 , LI Xianglun1,2 , WU Biao1,2
1. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071 , China
2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237 , China
3. Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007 , China
4. Guangxi Hydrobiology Laboratory, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007 , China
5. Management Station for Guangxi Weizhou Island Coral Reef National Marine Park, Beihai 536000 , China
6. Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007 , China
7. Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007 , China
摘要
石蚝是产自涠洲岛珊瑚礁区的野生牡蛎,隶属于缘曲牡蛎科(Gryphaeidae)舌骨牡蛎属 (Hyotissa),具有较大的经济价值。与巨牡蛎属(Crassostrea)的大宗牡蛎不同,石蚝的主要可食用部分为闭壳肌,但其营养成分和食用价值尚未明确。本研究选取 3 种主要石蚝——舌骨牡蛎(H. hyotis)、异壳舌骨牡蛎(H. inaequivalvis)和中华舌骨牡蛎(H. sinensis),依据国家标准对其闭壳肌基本营养成分、氨基酸和脂肪酸的组成和含量进行检测,并评价了其氨基酸和脂肪酸品质。结果显示,舌骨牡蛎、异壳舌骨牡蛎和中华舌骨牡蛎的闭壳肌中粗蛋白含量为 13.68~16.99 g/100g (以鲜重计,下同)、粗脂肪含量为 1.28~1.42 g/100 g;均测出 17 种氨基酸,包括 7 种必需氨基酸、4 种半必需氨基酸和 6 种非必需氨基酸,其中,2 种呈鲜味氨基酸——谷氨酸含量最高(2.10~2.40 g/100 g)、天冬氨酸滋味强度值最大(13.0~14.5),而必需氨基酸中赖氨酸的氨基酸评分(1.15~1.37)和化学评分(0.90~1.08) 最高,中华舌骨牡蛎必需氨基酸含量更均衡;必需氨基酸总量/氨基酸总量(EAA/TAA)接近 40%,必需氨基酸总量/非必需氨基酸总量(EAA/NEAA)超过70%;3种牡蛎检出脂肪酸的种类组成有差异,但饱和脂肪酸含量均较高,其中,舌骨牡蛎中检出的脂肪酸种类最多(15 种)、营养更均衡。本研究查明了石蚝闭壳肌的营养成分,其为高蛋白、低脂肪的海产品,具有优质的海洋动物蛋白,研究结果为涠洲岛舌骨牡蛎属牡蛎的资源开发和利用提供了有益的参考和借鉴。
Abstract
Oysters are commercially important shellfish that produce large amounts of high-quality animal proteins. Crassostrea oysters are currently the only oyster species used in aquaculture. Little is known about the quantities and dietary properties of Hyotissa oysters or their breeding and aquaculture technologies. Hyotissa oysters are locally known as stone oysters and are popular on Weizhou Island, Guangxi. Unlike Crassostrea species, the adductor muscles are the main edible parts of Hyotissa oysters. The stone oysters include H. hyotis, H. inaequivalvis, and H. sinensis. The nutritional composition of the adductor muscles of H. hyotis in South Korea has been analyzed but not that of the stone oysters in China. We therefore collected wild stone oysters from Weizhou Island in Guangxi in August 2024 and determined the nutritional composition of their edible adductor muscles according to the national standards in China, i.e. GB 5009.3, GB 5009.4, GB 5009.5, GB 5009.6, GB 5009.124, GB 5009.168, and GB/T 9695.31. The quality of amino acids and fatty acids was assessed using indices, such as the amino acid score, chemical score, essential amino acid index, taste activity value, atherogenicity index, and thrombogenicity index. The results showed the following: 1) The contents of total ash, fat, and total sugar in the adductor muscles of the three Hyotissa species were comparable, at 2.16–2.43 g/100 g, 1.28–1.42 g/100 g, and 2.24–2.69 g/100 g, respectively. The protein contents were 13.68–16.99 g/100 g. 2) A total of 17 amino acids were identified in the adductor muscles of all three Hyotissa oysters, including 7 essential amino acids, 4 semi-essential amino acids, and 6 non-essential amino acids. The amino acid contents were similar among the three stone oyster species, except that the cysteine and valine contents in H. hyotis were substantially lower than those in H. sinensis, and the tyrosine content in H. hyotis as notably higher than that in H. inaequivalvis. The content of glutamic acid was highest among all amino acids in all three species (2.10–2.40 g/100 g), followed by aspartic acid (1.30–1.45 g/100 g). The cysteine content was lowest among the 17 amino acids, at 0.03–0.05 g/100 g. H. hyotis had the highest contents of three flavor amino acids (aspartic acid, glutamic acid, and alanine), as well as total, essential, non-essential, and semi-essential amino acids. However, the contents of these amino acids were comparable among the three stone oyster species. The essential to total amino acid ratio was almost 40%, and the essential to non-essential amino acid ratio was over 70% for all species. 3) The fatty acid compositions differed among the three oyster species. H. hyotis contained 15 fatty acids including 7, 5, and 3 polyunsaturated, saturated, and monounsaturated fatty acids, respectively. H. inaequivalvis and H. sinensis contained only 12 fatty acids. The total fatty acid content was highest and lowest in H. hyotis (414.24 mg/100 g) and H. inaequivalvis (355.64 mg/100 g), respectively. The C16:0 content was the highest among these fatty acids, followed by C18:0. The C20:2 and C20:3n3 were detected only in H. hyotis. 4) The amino acid and chemical scores were highest for lysine, and the first limiting amino acid was methionine+cysteine. Lysine in H. hyotis, leucine and lysine in H. inaequivalvis, and six amino acids in H. sinensis reached the FAO/WHO standards. The taste activity value was highest for aspartic acid (13.0–14.5), followed by the glutamic acid. 5) The EPA, DHA, total monounsaturated fatty acid, and total polyunsaturated fatty acid contents were highest in H. hyotis. The DHA/EPA content was highest in H. inaequivalvis (2.081) and lowest in H. sinensis (1.590). The EPA+DHA content in the stone oysters was 17.47–32.78 mg/100 g. The atherogenicity index was the lowest and highest in H. hyotis and H. inaequivalvis, respectively; the thrombogenicity index for the three stone oysters was 0.037–0.068, which is considerably lower than that of scallop and fish. All three stone oyster species have high protein and low fat contents, and their adductor muscles provide superior marine animal proteins. The essential amino acid content in H. sinensis was more balanced, whereas H. hyotis had the most balanced fatty acids and health effects. However, all three species were high in saturated fatty acids, which contribute to thrombogenicity prevention. The composition and quality of the adductor muscles of stone oysters were studied. Our results provide a reference for the development and use of the Hyotissa germplasm on Weizhou Island.
作为中国海水养殖产量最大的贝类,牡蛎为我国居民供应了丰富且优质的动物蛋白(林海生等,2019; 农业农村部渔业渔政管理局等,2025)。牡蛎素有“海洋牛奶”之美称,其含有大量氨基酸,具有人体必需的亚油酸、亚麻酸、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)等多不饱和脂肪酸,还富含多种微量元素和矿物质,是国家卫生健康委员会批准的首批“药食同源”食品(曹荣等,2024)。牡蛎的营养品质与品种、海区、季节、染色体倍性等因素有关。广西壮族自治区钦州市养殖的近江牡蛎(Crassostrea ariakensis)、香港牡蛎(C. hongkongensis)和熊本牡蛎(C. sikamea)均含有 17 种氨基酸,但粗蛋白含量之间存在显著差异(王允茹等,2022);同样养殖于浙江省象山湾的熊本牡蛎和福建牡蛎(C. angulata)营养成分存在差异,前者糖原含量显著高于后者,而后者蛋白质含量较高(Liu et al,2021);华南沿海 10 个地区的近江牡蛎(Ostrea rivularis)在水分、蛋白质、脂肪和矿物质元素含量等方面差异较大(方玲等,2018);香港牡蛎的生化组成和营养品质随着性腺发育周期而发生季节性变化,6 月外套膜、闭壳肌和性腺–内脏团中的糖原水平明显低于 12 月(Qin et al,2021);长牡蛎(C. gigas)性腺–内脏团的脂肪和蛋白质含量同配子发育情况密切相关(吕敏等,2022),而三倍体和二倍体长牡蛎之间以及三倍体长牡蛎不同育性个体之间的生理能量和营养成分同样存在明显差异(王朔等,2021; 李伟伟等,2024)。因此,研究牡蛎营养成分与品质,对于牡蛎资源合理开发、利用以及发挥牡蛎的营养保健功能具有现实意义。
石蚝是产自广西壮族自治区涠洲岛海域、隶属于牡蛎目(Ostreida)缘曲牡蛎科(Gryphaeidae)舌骨牡蛎属(Hyotissa)的数种牡蛎的俗称,主要包括异壳舌骨牡蛎(H. inaequivalvis)、中华舌骨牡蛎(H. sinensis)和舌骨牡蛎(H. hyotis)(胡利莎,2020),是极具地方特色的野生牡蛎产品。舌骨牡蛎的闭壳肌较大,富含蛋白质和 EPA、DHA 等有益脂肪酸,是未来水产养殖中极具潜力的物种(Hong et al,2022)。作为热带珊瑚礁的典型生物类群(Titschack et al,2010),缘曲牡蛎科是牡蛎科(Ostreidae)的姊妹群,在侏罗纪时期开始分化形成两个独立的科(Li et al,2021)。在全球变暖背景下,舌骨牡蛎的分布范围已经从热带和亚热带海域扩展到韩国南部海岸的济州岛(Hong et al,2020)。在国内,天然的石蚝资源为涠洲岛持续创造着经济效益,舌骨牡蛎属牡蛎的种质资源研究也陆续开展(Li et al,2022、2023),但尚未见其营养相关研究。本研究聚焦涠洲岛石蚝的 3 种主要牡蛎——舌骨牡蛎、中华舌骨牡蛎和异壳舌骨牡蛎,比较研究其营养成分和品质,以期为舌骨牡蛎属牡蛎的开发和利用提供有效支撑。
1 材料与方法
1.1 实验材料
实验所用舌骨牡蛎、异壳舌骨牡蛎和中华舌骨牡蛎为 2024 年 8 月在涠洲岛南湾海区(水深 10~15 m)采用水肺潜水方式采集获得,每种 10 个个体,依据壳内面和外面形态特征进行物种鉴定(胡利莎,2020)(图1)。舌骨牡蛎平均壳长为(13.96±2.06)cm,平均总重为(562.25±83.58)g;异壳舌骨牡蛎平均壳长为(11.41±1.09)cm,平均总重为(362.21±103.53)g;中华舌骨牡蛎平均壳长为(12.77±1.45)cm,平均总重为(549.80±190.16)g。解剖后,取闭壳肌于 50 mL 冻存管中,经液氮速冻后超低温保存待用。每种牡蛎设置 3 组生物学平行。
1.2 实验方法
1.2.1 检测指标
基本营养成分:水分、总灰分、粗脂肪、粗蛋白、总糖;16 种酸水解氨基酸,半胱氨酸,脂肪酸。
1本研究中的 3 种石蚝
Fig.1Three stone oysters in this study
A:舌骨牡蛎;B:异壳舌骨牡蛎;C:中华舌骨牡蛎。
A: Hyotissa hyotis; B: Hyotissa inaequivalvis; C: Hyotissa sinensis.
1.2.2 检测方法
依据 GB 5009.3-2016《食品安全国家标准食品中水分的测定》,采用直接干燥法(电热恒温干燥箱 SJ201DL,世宗科学株式会社,韩国京畿道)测定样品中水分含量(g/100 g);依据 GB 5009.4-2016《食品安全国家标准食品中灰分的测定》,采用灼烧、称重法测定总灰分含量(g/100 g);依据 GB 5009.5-2016《食品安全国家标准食品中蛋白质的测定》,采用凯氏定氮法(凯氏定氮仪 K9840,济南海能仪器股份有限公司)测定粗蛋白质含量(g/100 g);依据 GB 5009.6-2016《食品安全国家标准食品中脂肪的测定》,采用索氏抽提法测定粗脂肪含量(g/100 g);依据 GB/T9695.31-2008《肉制品总糖含量测定》,采用分光光度法(紫外可见分光光度仪 Agilent 8453,安捷伦科技有限公司,美国)测定总糖含量(g/100 g)。
依据 GB 5009.124-2016《食品安全国家标准食品中氨基酸的测定》,采用氨基酸分析仪(LA8080,日立高新技术有限公司,日本)测定样品中酸水解氨基酸的种类组成和含量(g/100 g),半胱氨酸含量检测参考叶少文(2015);依据 GB 5009.168-2016《食品安全国家标准食品中脂肪酸的测定》,采用第二法外标法(气相色谱仪 Agilent 7890A,安捷伦科技有限公司,美国)测定样品中脂肪酸的组成和含量(mg/100 g)。
1.2.3 蛋白质评价
根据联合国粮食及农业组织(FAO)/世界卫生组织(WHO)提出的理想蛋白质必需氨基酸评分标准模式(FAO and WHO,1973)、中国预防医学科学院营养与食品卫生研究所(1991)提出的鸡蛋蛋白模式,分别采用氨基酸评分(amino acid score,AAS)、化学评分(chemical score,CS)和必需氨基酸指数(essential amino acid index,EAAI)评价石蚝闭壳肌中的必需氨基酸含量(Oser,1951);采用滋味强度值(taste activity value,TAV)评价氨基酸呈味特征(Warmke et al,1996)。公式如下:
AAS=aaAA(FAO/WHO)
(1)
式中,aa 为样品中每克蛋白质中氨基酸含量(mg/g 蛋白);AA(FAO/WHO)为 FAO/WHO 理想蛋白质评分标准模式中每克蛋白质中相应的必需氨基酸含量(mg/g 蛋白)。
CS=aaAA(CS)
(2)
式中,aa 为样品中每克蛋白质中的氨基酸含量(mg/g 蛋白);AA(CS)为鸡蛋蛋白模式中每克蛋白质中相应必需氨基酸含量(mg/g 蛋白)。
EAAI=aa1AA1×aa2AA2××aa7AA77
(3)
式中,aa1、aa2…aa7 为样品中每克蛋白质中 7 类必需氨基酸含量(mg/g 蛋白);AA1、AA2AA7 为鸡蛋蛋白模式中每克蛋白质中相应 7 类必需氨基酸含量(mg/g 蛋白)。
TAV=CV
(4)
式中,TAV 为滋味强度值;C 为氨基酸的含量(mg/100 g);V 为氨基酸滋味阈值(mg/100 g)(温心怡,2021)。
1.2.4 脂肪酸评价
采用 DHA 和 EPA 的比例(DHA/EPA)、DHA 和 EPA 总量(DHA+EPA)、总饱和脂肪酸(∑SFA)、总单不饱和脂肪酸(∑MUFA)、总多不饱和脂肪酸(∑PUFA)、总 n-6 多不饱和脂肪酸(∑n-6PUFA)、总 n-3 多不饱和脂肪酸(∑n-3PUFA)、总多不饱和脂肪酸和总饱和脂肪酸比例(∑PUFA/SFA)以及动脉粥样硬化指数(index of atherogenicity,IA)和血栓形成指数(index of thrombogenicity,IT)评价石蚝闭壳肌中的脂肪酸(Chen et al,2020; 蔡丽君等,2022)。 IA 和 IT 计算公式如下:
IA=4×C14:0+C16:0UFA
(5)
式中,IA 为动脉粥样硬化指数;C12:0 为月桂酸含量(mg/100 g);C14:0 为肉豆蔻酸含量(mg/100 g);C16:0 为十六烷酸甘油二酯含量(mg/100 g);∑UFA 为不饱和脂肪酸总量(mg/100 g)。
IT=Cl4:0+Cl6:0+Cl8:00.5MUFA+0.5n-6PUFA+3n-3PUFA+n-3PUFA/n-6PUFA
(6)
式中,IT 为血栓形成指数;C14:0 为肉豆蔻酸含量(mg/100 g); C16:0 为十六烷酸甘油二酯含量(mg/100 g);C18:0 为硬脂酸含量(mg/100 g)。
1.3 数据处理
检测结果以平均值±标准差(Mean±SD)表示。使用 Excel 2010 软件对不同物种间检测指标进行单因素方差分析(one-way ANOVA),P<0.05 为差异显著。
2 结果与分析
2.1 石蚝闭壳肌的基本营养组成
与长牡蛎、香港牡蛎等国内大宗牡蛎不同,舌骨牡蛎属贝类闭壳肌较大,占总软体部的 40%以上(Hong et al,2022),是涠洲岛上石蚝主要的食用部位。由于牡蛎不同器官的营养成分存在差异,且内脏团对整体营养水平影响较大(方玲等,2018; 吕敏等,2022),因此,本研究中仅检测石蚝闭壳肌的营养组成。结果显示,3 种石蚝闭壳肌鲜样的粗蛋白和粗脂肪含量分别为 13.68~16.99 g/100 g 和 1.28~1.42 g/100 g,呈现高蛋白、低脂肪的特点(表1)。而总灰分和总糖分别为 2.16~2.43 g/100 g 和 2.24~2.69 g/100 g,均高于粗脂肪含量。
2.2 氨基酸的组成与含量
舌骨牡蛎、异壳舌骨牡蛎和中华舌骨牡蛎闭壳肌中均检出 17 种氨基酸,包括 7 种必需氨基酸(EAA)、 4 种半必需氨基酸(SEAA)和 6 种非必需氨基酸(NEAA)(表2)。除舌骨牡蛎的半胱氨酸和缬氨酸含量显著低于中华舌骨牡蛎、舌骨牡蛎的酪氨酸含量显著高于异壳舌骨牡蛎外,其他氨基酸含量在 3 种石蚝间均差异不显著。在 3 种石蚝中,均为谷氨酸含量最高,达到 2.10~2.40 g/100 g,其次为天冬氨酸,为 1.30~1.45 g/100 g;丙氨酸、亮氨酸、赖氨酸和精氨酸的含量也较高,在全部 3 种或个别种牡蛎中的含量超过 1.00 g/100 g;半胱氨酸的含量最低,仅为 0.03~0.05 g/100 g。谷氨酸和天冬氨酸含量的优势性同广西养殖的 10—12 月香港牡蛎相同(严雪瑜等,2022; Qin et al,2021),但同样 8 月广西养殖的香港牡蛎中天冬氨酸含量最高,其次为甘氨酸和亮氨酸(Qin et al,2021。作为重要的呈鲜味氨基酸,谷氨酸和天冬氨酸的含量在不同牡蛎品种间和季节间差异较大(林海生等,2019),但舌骨牡蛎在繁殖期前后闭壳肌中始终谷氨酸含量最高、其次是天冬氨酸(Hong et al,2022),因此,谷氨酸和天冬氨酸含量的优势性可能是石蚝闭壳肌的重要特征。在 3 种石蚝中,检测出的呈鲜味氨基酸均有天冬氨酸、谷氨酸、甘氨酸和丙氨酸 4 种; 除甘氨酸(中华舌骨牡蛎中含量最高,为 0.77 g/100 g)外,其他 3 种均在舌骨牡蛎中含量最高,分别为 1.45、 2.40 和 1.02 g/100 g。
3 种石蚝闭壳肌中,氨基酸总量(TAA,11.95~13.20 g/100 g)、必需氨基酸总量(EAA,4.40~4.81 g/100 g)、非必需氨基酸总量(NEAA,5.85~6.49 g/100 g)、半必需氨基酸总量(SEAA,1.69~1.90 g/100 g)和呈鲜味氨基酸总量(FAA,4.93~5.50 g/100 g)均差异不显著,但在舌骨牡蛎中含量均最高。舌骨牡蛎闭壳肌中 FAA/TAA 最大,为 41.71%。总体来看,石蚝闭壳肌中必需氨基酸、非必需氨基酸和呈鲜味氨基酸含量较高。必需氨基酸是对于机体维持生长、发育和健康必要但人体不能自主合成而需从食物中获取的一类氨基酸(Hou et al,2015),因此,其含量常作为评价食物价值的重要指标。本研究中 3 种石蚝必需氨基酸高于香港地区养殖的香港牡蛎(2.62 g/100 g)、福建牡蛎(3.44 g/100 g)和近江牡蛎(3.33 g/100g,Loaiza et al,2023);EAA/TAA 为 36.43%~36.88%,与 Hong 等(2022)对舌骨牡蛎的检测结果(36.01%~36.74%)相吻合。 EAA/ TAA 和 EAA/NEAA 的值常被作为评价食物中蛋白质营养均衡性的重要指标,前者标准参考值为 40%,后者为超过 60%(Sun et al,2017; Yang et al,2018)。3 种石蚝闭壳肌中 EAA/TAA 接近 40%,而 EAA/NEAA 值均超过 70%,两项指标均明显大于长牡蛎(Zhu et al,2018)。其中,中华舌骨牡蛎闭壳肌中 EAA/TAA 和 EAA/NEAA 最大,分别为 36.88%和 75.37%,因此,石蚝的闭壳肌是优质的海洋动物蛋白,营养价值较高。
2.3 脂肪酸的组成与含量
由于石蚝闭壳肌中粗脂肪含量较低,依据不同方法和定量限检测得到的脂肪酸组成可能存在差异。 Hong 等(2022)在舌骨牡蛎闭壳肌中检测出 13 种饱和脂肪酸、8 种单不饱和脂肪酸和 10 种多不饱和脂肪酸。而本研究在舌骨牡蛎闭壳肌鲜样中仅检出 15 种脂肪酸,包括 5 种饱和脂肪酸、3 种单不饱和脂肪酸和 7 种多不饱和脂肪酸,而异壳舌骨牡蛎和中华舌骨牡蛎则检出 12 种脂肪酸,前者包括 5 种饱和脂肪酸、 3 种单不饱和脂肪酸和 4 种多不饱和脂肪酸,后者包括 5 种饱和脂肪酸、2 种单不饱和脂肪酸和 5 种多不饱和脂肪酸(表3)。舌骨牡蛎中测出的脂肪酸总量最多,达到 414.24 mg/100 g,而异壳舌骨牡蛎最少,仅为 355.64 mg/100 g。在本研究中,3 种石蚝中测出含量最多的脂肪酸均为棕榈酸(C16:0),其次是硬脂酸(C18:0),与 Hong 等(2022)的结果相同。其中,中华舌骨牡蛎中 C16:0 和 C18:0 的含量在 3 种间均最高,分别为 191.27 mg/100 g 和 85.51 mg/100 g。比较结果显示,异壳舌骨牡蛎闭壳肌鲜样中的棕榈油酸(C16:1, 9.79 mg/100 g)和 α 亚麻酸(C18:3n3,17.35 mg/100 g)的含量显著低于舌骨牡蛎(分别为 15.21 mg/100 g 和 24.36 mg/100 g)。此外,花生二烯酸(C20:2)和顺式-11,14,17-二十碳三烯酸(C20:3n3)仅在舌骨牡蛎中被检出。C18:3n3 是一种 ω-3 必需不饱和脂肪酸,具有预防心脑血管疾病、增强人体免疫、增强智力、保护视力等作用(闫晓松等,2014),而 C20:2 也是必需脂肪酸,对免疫系统和心血管健康等有较好的促进作用(Ly et al,2010),因此,舌骨牡蛎闭壳肌检出的脂肪酸种类最多,保健作用更好。
13 种石蚝闭壳肌的基本营养组成(g/100 g)
Tab.1Nutrition compositions of adductor muscles of three stone oysters (g/100 g)
注:同一行数据标注不同字母表示物种间差异显著(P<0.05),标注相同字母表示差异不显著(P>0.05),下同。
Note: Data in the same row marked with different letters are significantly different between species, while that with same letters are no significant difference. The same as below.
23 种石蚝闭壳肌的氨基酸组成和含量(g/100 g)
Tab.2Compositions and contents of amino acids of adductor muscles of three stone oysters (g/100 g)
注:**:必需氨基酸;*:半必需氨基酸;#:呈鲜味氨基酸。
Note: **: Essential amino acids; *: Semi-essential amino acids; #: Flavor amino acids.
2.4 氨基酸评价
在 3 种石蚝中,赖氨酸的 AAS 和 CS 均最高,其第一限制性氨基酸均为蛋氨酸+半胱氨酸(表4),与华南地区近江牡蛎相同(方玲等,2018)。蛋氨酸限制食物具有延长寿命、减肥降脂和抗肿瘤等功效(Lee et al,2014; 崔桂芳,2024),因此,石蚝闭壳肌食品具有较好的保健作用。在必需氨基酸评分中,舌骨牡蛎仅有赖氨酸、异壳舌骨牡蛎仅有亮氨酸和赖氨酸达到 FAO/WHO 标准,但中华舌骨牡蛎有 6 种氨基酸高于 FAO/WHO 标准(仅蛋氨酸+半胱氨酸评分小于 1),因此,中华舌骨牡蛎必需氨基酸含量更均衡。同巨牡蛎属牡蛎相比,3 种石蚝闭壳肌的各项必需氨基酸评分均优于香港地区的香港牡蛎和熊本牡蛎(Loaiza et al,2023)。而在鸡蛋蛋白模式的化学评分中,除中华舌骨牡蛎的赖氨酸评分达到鸡蛋蛋白标准外,其他各氨基酸的评分均小于 1。此外,3 种石蚝闭壳肌的必需氨基酸指数均低于印度喀拉拉邦的牡蛎(C. madrasensis)(120.2%)(Asha et al,2014),其中,中华舌骨牡蛎的必需氨基酸指数最大,达到 76.74%,其次为异壳舌骨牡蛎(66.32%),而舌骨牡蛎的必需氨基酸指数最小,仅为 61.86%。
33 种石蚝闭壳肌的脂肪酸组成和含量(mg/100 g)
Tab.3Compositions and contents of fatty acids of adductor muscles of three stone oysters (mg/100 g)
在呈味特征方面,除甘氨酸外,舌骨牡蛎中检出的另外 3 种呈鲜味氨基酸 TAV 值均高于异壳舌骨牡蛎和中华舌骨牡蛎。3 种石蚝闭壳肌中天冬氨酸的 TAV 值均显著大于其他氨基酸,达到 13.0~14.5,对石蚝的呈鲜味贡献最大,其次为谷氨酸,这可能是石蚝闭壳肌味道鲜美、备受追捧的重要原因之一(表5)。此外,丙氨酸、缬氨酸、赖氨酸、精氨酸和组氨酸的 TAV 也都大于 1,即对石蚝闭壳肌的味道有显著影响。 Komata 等(1964)认为,谷氨酸不会直接产生鲜味,而是同次黄嘌呤核苷酸(inosine monophosphate,IMP)和鸟嘌呤核苷酸(Guanosine5'-monophosphate,GMP)等呈味核苷酸协同产生鲜味。而 Murata 等(2020)对长牡蛎的进一步研究发现,牡蛎肉鲜味同谷氨酸含量没有直接相关性,但牡蛎的甜味同 TAA 和丝氨酸含量呈正相关。3 种石蚝之间的 TAA 和丝氨酸含量差异均不大,故可认为甜味没有显著差异。
2.5 脂肪酸评价
舌骨牡蛎闭壳肌鲜样中检出 EPA和 DHA 的含量,以及∑MUFA、∑PUFA 均在 3 种石蚝中最高,分别为 10.64 mg/100 g、22.15 mg/100 g、43.38 mg/100 g 和 76.38 mg/100 g(表6)。异壳舌骨牡蛎 DHA/EPA 的比例最高,达到 2.081,而中华舌骨牡蛎中的最低,仅为 1.590。EPA 和 DHA 是主要的 n-3 长链多不饱和脂肪酸,在人体生物学过程中发挥重要作用,可以降低心血管疾病、高血压和炎症的风险(Schulze et al,2020)。虽然 EPA 和 DHA 能够在体内由 α-亚麻酸合成,但转化率极低,因此,饮食中必须优先提供 n-3 PUFA,而海洋鱼类和贝类是其最重要的来源(Nakamura et al,2003; Rincón-Cervera et al,2019; Chen et al,2020)。当前研究发现,海洋性 n-3 PUFA 摄入对降低大动脉粥样硬化风险的作用最为显著,大大降低死亡风险(Jiang et al,2021)。石蚝中EPA+DHA含量为18~33 mg/100 g,虽然低于鲍鱼(63.61 mg/100 g)和蛏(216.96 mg/100 g)(Rincón-Cervera et al,2020),但也能一定程度上避免 EPA 和 DHA 过量摄入可能出现的出血和房颤等风险(中国营养学会,2023)。与 FAO 设定值一致,我国成年人 EPA+DHA 的宏量营养素可接受范围为 250~2 000 mg/d(中国营养学会,2023),即每天摄入 750 g 以上的石蚝闭壳肌才会超标,基本可以避免 EPA 和 DHA 过量摄入带来的安全风险。
43 种石蚝闭壳肌必需氨基酸含量评价
Tab.4Evaluation of essential amino acid contents in the adductor muscles of three stone oysters
53 种石蚝闭壳肌的游离氨基酸味道特征、阈值及 TAV 值
Tab.5Taste characteristics, threshold, and TAV values of amino acids in the adductor muscles of three stone oysters
IA 和 IT 两项指标均与心血管健康相关,分别用来评价脂肪酸造成动脉粥样硬化和血栓的风险(Ulbricht et al,1991)。不饱和脂肪酸能够降低磷脂、胆固醇和脂肪水平,具有抗动脉粥样硬化的作用(Omri et al,2019)。因此,较低 IA 值的食物能够减少血浆中总胆固醇和低密度脂蛋白胆固醇的水平(Yurchenko et al,2018)。在本研究中,3 种石蚝不饱和脂肪酸总含量为 75.59~109.76 mg/100 g,IA 值为 1.933~2.907,其中,舌骨牡蛎 IA 值最小(1.933),异壳舌骨牡蛎最大(2.907),高于牡蛎(C. madrasensis)(Chakraborty et al,2016)、扇贝(Wu et al,2019)、虾、鱼等水产品(Chen et al,2020)。此外,3 种石蚝 IT 值为0.037~0.068,远低于牡蛎(C. madrasensis)(Chakraborty et al,2016)、扇贝、鱼等水产品(Chen et al,2020),推测具有较好的预防血栓效果。
63 种石蚝闭壳肌的脂肪酸评价
Tab.6Evaluation on fatty acids of adductor muscle of three stone oysters
3 结论
涠洲岛 3 种石蚝——舌骨牡蛎、异壳舌骨牡蛎和中华舌骨牡蛎的闭壳肌均为高蛋白、低脂肪的海产品。本研究在 3 种石蚝闭壳肌中均检出 17 种氨基酸,即 7 种必需氨基酸、4 种半必需氨基酸和 6 种非必需氨基酸,其中,谷氨酸含量最高、天冬氨酸滋味强度值最大,可能促进了石蚝闭壳肌的鲜味,而谷氨酸、天冬氨酸和丙氨酸 3 种呈鲜味氨基酸的含量均在舌骨牡蛎中最高。赖氨酸的氨基酸评分和化学评分最高,第一限制性氨基酸为蛋氨酸+半胱氨酸,总体来看,中华舌骨牡蛎中检出的必需氨基酸含量更均衡,有 6 种氨基酸含量高于 FAO/WHO 标准。石蚝闭壳肌中 EAA/TAA 接近 40%,EAA/NEAA 值超过 70%,是优质的海洋动物蛋白,营养价值较高。3 种石蚝闭壳肌中测出脂肪酸的种类组成有差异,其中,舌骨牡蛎的脂肪酸种类最多、营养均衡、保健作用更加,其较异壳舌骨牡蛎多 3 种多不饱和脂肪酸,较中华舌骨牡蛎多 1 种单不饱和脂肪酸和 2 种多不饱和脂肪酸。3 种牡蛎中,异壳舌骨牡蛎 DHA/EPA 的比例最高,动脉粥样硬化指数最大。3 种石蚝闭壳肌中血栓形成指数均较低,推测具有较好的预防血栓效果。
1本研究中的 3 种石蚝
Fig.1Three stone oysters in this study
13 种石蚝闭壳肌的基本营养组成(g/100 g)
Tab.1Nutrition compositions of adductor muscles of three stone oysters (g/100 g)
23 种石蚝闭壳肌的氨基酸组成和含量(g/100 g)
Tab.2Compositions and contents of amino acids of adductor muscles of three stone oysters (g/100 g)
33 种石蚝闭壳肌的脂肪酸组成和含量(mg/100 g)
Tab.3Compositions and contents of fatty acids of adductor muscles of three stone oysters (mg/100 g)
43 种石蚝闭壳肌必需氨基酸含量评价
Tab.4Evaluation of essential amino acid contents in the adductor muscles of three stone oysters
53 种石蚝闭壳肌的游离氨基酸味道特征、阈值及 TAV 值
Tab.5Taste characteristics, threshold, and TAV values of amino acids in the adductor muscles of three stone oysters
63 种石蚝闭壳肌的脂肪酸评价
Tab.6Evaluation on fatty acids of adductor muscle of three stone oysters
ASHA K K, ANANDAN R, MATHEW S, et al. Biochemical profile of oyster Crassostrea madrasensis and its nutritional attributes. Egyptian Journal of Aquatic Research, 2014, 40(1): 35-41
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2025. Beijing: China Agriculture Press, 2025[农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2025中国渔业统计年鉴. 北京: 中国农业出版社, 2025]
CAI L J, GUO Q Y, MA D L, et al. Effects of pond-cultivation and paddy-cultivation modes on nutritional quality of loach. Progress in Fishery Sciences, 2022, 43(3): 196-206[蔡丽君, 郭全友, 马东林, 等. 池塘和稻田养殖模式对泥鳅营养品质的影响. 渔业科学进展, 2022, 43(3): 196-206]
CAO R, WU B, ZHAO Y H. The magical oyster. Beijing: China Agriculture Press, 2024[曹荣, 吴彪, 赵元晖. 神奇的牡蛎. 北京: 中国农业出版社, 2024]
CHAKRABORTY K, CHAKKALAKAL S J, JOSEPH D, et al. Nutritional composition of edible oysters (Crassostrea madrasensis L.) from the southwest coast of India. Journal of Aquatic Food Product Technology, 2016, 25(8): 1172-1189
CHEN J P, LIU H B. Nutritional indices for assessing fatty acids: A mini-review. International Journal of Molecular Sciences, 2020, 21(16): 5695
Chinese Nutrition Society. Dietary reference intakes for China. Beijing: People’s Medical Publishing House, 2023[中国营养学会. 中国居民膳食营养素参考摄入量: 2023版. 北京: 人民卫生出版社, 2023]
CUI G F. Mechanism of methionine restriction diet improving atherosclerosis and heterologous expression and application of methionine lyase. Master’s Thesis of Henan University of Technology, 2024[崔桂芳. 蛋氨酸限制饮食改善动脉粥样硬化的机制及蛋氨酸裂解酶异源表达和应用研究. 河南工业大学硕士研究生学位论文, 2024]
FANG L, MA H X, LI L H, et al. Analysis and evaluation of nutrient composition in Ostrea rivularis from South China Sea coast. Science and Technology of Food Industry, 2018, 39(2): 301-307, 313[方玲, 马海霞, 李来好, 等. 华南地区近江牡蛎营养成分分析及评价. 食品工业科技, 2018, 39(2): 301-307, 313]
FAO and WHO. Energy and protein requirements: Report of a joint FAO-WHO ad hoc expert committee. Rome, 22 March-2 April 1971. World Health Organization Technical Report Series, 1973, 522: 1-118
HONG H K, JEUNG H D, KANG H S, et al. Seasonal variations in the hemocyte parameters, gonad development, energy storage and utilization of the giant honeycomb oyster Hyotissa hyotis (Linnaeus 1758) in Jeju Island off the south coast of Korea. Aquaculture Reports, 2020, 17: 100299
HONG H K, KOO J H, KO J C, et al. Proximate composition, amino acids, and fatty acids in the adductor muscle of the giant honeycomb oyster Hyotissa hyotis (Linnaeus, 1758) from Jeju Island, Korea. Journal of Shellfish Research, 2022, 41(1): 101-107
HOU Y Q, YIN Y L, WU G Y. Dietary essentiality of“nutritionally non-essential amino acids” for animals and humans. Experimental Biology and Medicine, 2015, 240(8): 997-1007
HU L S. Taxonomy of Gryphaeidae and related oysters along the coast of China and phylogeography of Crassostrea talonata. Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2020[胡利莎. 中国近海缘曲牡蛎科和其他部分属种的分类及猫爪牡蛎系统地理学研究. 中国科学院大学(中国科学院海洋研究所)博士研究生学位论文, 2020]
Institute for Nutrition and Food Safety of the Chinese Center for Disease Control and Prevention. Food composition table (national representative value). Beijing: People’s Medical Publishing House, 1991[中国预防医学科学院营养与食品卫生研究所. 食物成分表(全国代表值). 北京: 人民卫生出版社, 1991]
JIANG L, WANG J Y, XIONG K, et al. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of cardiovascular disease mortality: A meta-analysis of prospective cohort studies. Nutrients, 2021, 13(7): 2342
KOMATA Y. Studies on the extractives of“uni”-iv. Nippon Suisan Gakkaishi, 1964, 30(9): 749-756
LEE B C, KAYA A, MA S M, et al. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nature Communications, 2014, 5: 3592
LI C, KOU Q, ZHANG Z, et al. Reconstruction of the evolutionary biogeography reveal the origins and diversification of oysters (Bivalvia: Ostreidae). Molecular Phylogenetics and Evolution, 2021, 164: 107268
LI F P, FAN M F, WANG S S, et al. The complete mitochondrial genome of Hyotissa hyotis (Bivalvia: Gryphaeidae) reveals a unique gene order within Ostreoidea. Fishes, 2022, 7(6): 317
LI F P, LIU H Y, HENG X, et al. The complete mitochondrial genome of Hyotissa sinensis (Bivalvia, Ostreoidea) indicates the genetic diversity within Gryphaeidae. Biodiversity Data Journal, 2023, 11: e101333
LI W W, JIANG W W, JIANG Z J, et al. Comparative study on the feeding metabolism and carbon budget of the triploid and diploid Pacific oyster (Crassostrea gigas). Progress in Fishery Sciences, 2024, 45(4): 125-134[李伟伟, 姜娓娓, 蒋增杰, 等. 夏季高温期三倍体和二倍体长牡蛎生理能量学及碳收支的比较研究. 渔业科学进展, 2024, 45(4): 125-134]
LIN H S, QIN X M, ZHANG C H, et al. Comparative analysis of nutritional components and flavor characteristics of cultivated oyster from different coastal areas of China. South China Fisheries Science, 2019, 15(2): 110-120[林海生, 秦小明, 章超桦, 等. 中国沿海主要牡蛎养殖品种的营养品质和风味特征比较分析. 南方水产科学, 2019, 15(2): 110-120]
LIU S, XU H Q, JIAN S S, et al. Molecular basis of taste and micronutrient content in Kumamoto oysters (Crassostrea sikamea) and Portuguese oysters (Crassostrea angulata) from Xiangshan Bay. Frontiers in Physiology, 2021, 12: 713736
LOAIZA I, WONG C, THIYAGARAJAN V. Comparative analysis of nutritional quality of edible oysters cultivated in Hong Kong. Journal of Food Composition and Analysis, 2023, 118: 105159
LV M, LI Q. Seasonal variations of gonadal development and biochemical components of Crassostrea gigas in Tianheng Island Sea area, Shandong. Periodical of Ocean University of China, 2022, 52(2): 33-40[吕敏, 李琪. 山东田横岛海域长牡蛎性腺发育及生化成分周年变化. 中国海洋大学学报(自然科学版), 2022, 52(2): 33-40]
LY D, TOHN R, RUBIN B, et al. An α-galactosylceramide C20: 2 N-acyl variant enhances anti-inflammatory and regulatory T cell-independent responses that prevent type 1 diabetes. Clinical & Experimental Immunology, 2010, 160(2): 185-198
MURATA Y, TOUHATA K, MIWA R. Correlation of extractive components and body index with taste in oyster Crassostrea gigas brands. Fisheries Science, 2020, 86(3): 561-572
NAKAMURA M T, NARA T Y. Essential fatty acid synthesis and its regulation in mammals. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 2003, 68(2): 145-150
OMRI B, CHALGHOUMI R, IZZO L, et al. Effect of dietary incorporation of linseed alone or together with tomato-red pepper mix on laying hens' egg yolk fatty acids profile and health lipid indexes. Nutrients, 2019, 11(4): 813
OSER B L. Method for integrating essential amino acid content in the nutritional evaluation of protein. Journal of the American Dietetic Association, 1951, 27(5): 396-402
QIN Y P, LI X Y, LI J, et al. Seasonal variations in biochemical composition and nutritional quality of Crassostrea hongkongensis, in relation to the gametogenic cycle. Food Chemistry, 2021, 356: 129736
RINCÓN-CERVERA M Á, GONZÁLEZ-BARRIGA V, ROMERO J, et al. Quantification and distribution of omega-3 fatty acids in south Pacific fish and shellfish species. Foods, 2020, 9(2): 233
RINCÓN-CERVERA M Á, GONZÁLEZ-BARRIGA V, VALENZUELA R, et al. Profile and distribution of fatty acids in edible parts of commonly consumed marine fishes in Chile. Food Chemistry, 2019, 274: 123-129
SCHULZE M B, MINIHANE A M, SALEH R N M, et al. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: Nutritional implications for cardiometabolic diseases. The Lancet Diabetes & Endocrinology, 2020, 8(11): 915-930
SUN L P, LIU Q M, BAO C J, et al. Comparison of free total amino acid compositions and their functional classifications in 13 wild edible mushrooms. Molecules, 2017, 22(3): 350
TITSCHACK J, ZUSCHIN M, SPÖTL C, et al. The giant oyster Hyotissa hyotis from the northern Red Sea as a decadal-scale archive for seasonal environmental fluctuations in coral reef habitats. Coral Reefs, 2010, 29(4): 1061-1075
ULBRICHT T L V, SOUTHGATE D A T. Coronary heart disease: Seven dietary factors. The Lancet, 1991, 338(8773): 985-992
WANG S, XUE M Y, YANG Q, et al. Comparison of nutritional components of different fertility triploid Pacific oyster (Crassostrea gigas) during gonadal development. Journal of Fisheries of China, 2021, 45(1): 88-97[王朔, 薛茗元, 杨琼, 等. 不同育性三倍体长牡蛎性腺发育过程中的营养成分比较. 水产学报, 2021, 45(1): 88-97]
WANG Y R, CAI Q X, ZHANG C X, et al. Analysis and evaluation of protein and amino acid nutrition of three common oysters in Beibu Gulf. Science and Technology of Food Industry, 2022, 43(7): 310-316[王允茹, 蔡秋杏, 张晨晓, 等. 北部湾海区三种常见牡蛎的蛋白质及氨基酸营养分析与评价. 食品工业科技, 2022, 43(7): 310-316]
WARMKE R, BELITZ H D, GROSCH W. Evaluation of taste compounds of Swiss cheese (Emmentaler). Zeitschrift für Lebensmittel-Untersuchung und Forschung, 1996, 203(3): 230-235
WEN X Y. Flavor quality characteristics and effects of passage on flavor of red shell Meretrix meretrix. Master’s Thesis of Jiangnan University, 2021[温心怡. 红壳文蛤风味品质特征及传代对风味的影响. 江南大学硕士研究所学位论文, 2021]
WU Z X, HU X P, ZHOU D Y, et al. Seasonal variation of proximate composition and lipid nutritional value of two species of scallops (Chlamys farreri and Patinopecten yessoensis). European Journal of Lipid Science and Technology, 2019, 121(7): 1800493
YAN X S, GU K R, MA L, et al. Research progress on α-linolenic acid purification technology. Cereals & Oils, 2014, 27(9): 9-13[闫晓松, 谷克仁, 马磊, 等. α-亚麻酸纯化技术研究进展. 粮食与油脂, 2014, 27(9): 9-13]
YAN X Y, QIN B Z, HUANG W D, et al. Correlation analysis between nutritional evaluation and gene expression of Crassostrea hongkongensis in different fattening sea areas. Science and Technology of Food Industry, 2022, 43(13): 276-283[严雪瑜, 覃波忠, 黄伟德, 等. 不同育肥海区香港牡蛎的营养评价及基因表达相关性分析. 食品工业科技, 2022, 43(13): 276-283]
YANG F, HUANG X J, ZHANG C L, et al. Amino acid composition and nutritional value evaluation of Chinese chestnut (Castanea mollissima Blume) and its protein subunit. RSC Advances, 2018, 8(5): 2653-2659
YE S W. Determination of free L-cysteine by automatic amino acid analyzer. Journal of Food Safety & Quality, 2015, 6(8): 3129-3133[叶少文. 氨基酸自动分析仪测定游离L-半胱氨酸. 食品安全质量检测学报, 2015, 6(8): 3129-3133]
YURCHENKO S, SATS A, TATAR V, et al. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chemistry, 2018, 254: 326-332
ZHU Y J, LI Q, YU H, et al. Biochemical composition and nutritional value of different shell color strains of Pacific oyster Crassostrea gigas. Journal of Ocean University of China, 2018, 17(4): 897-904