AIKEN G. Fluorescence and dissolved organic matter: A Chemistʼs perspective. In: COBLE P G, LEAD J, BAKER A, et al (Eds). Aquatic organic matter fluorescence. Cambridge Environmental Chemistry Series. Cambridge University Press, 2014, 35-74
ALLDREDGE A L, PASSOW U, LOGAN B E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1131-1140
ARNOSTI C, WIETZ M, BRINKHOFF T, et al. The biogeochemistry of marine polysaccharides: Sources, inventories, and bacterial drivers of the carbohydrate cycle. Annual Review of Marine Science, 2021, 13: 81-108
AZAM F, FENCHEL T, FIELD J G, et al. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 1983, 10: 257-263
BAI Y, SU R G, SHI X Y. Assessing the dynamics of chromophoric dissolved organic matter in the southern Yellow Sea by excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Continental Shelf Research, 2014, 88: 103-116
BENNER R, KAISER K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnology and Oceanography, 2003, 48(1): 118-128
BERMAN T, MIZRAHI R, DOSORETZ C G. Transparent exopolymer particles (TEP): A critical factor in aquatic biofilm initiation and fouling on filtration membranes. Desalination, 2011, 276(1/2/3): 184-190
BERMAN T, VINER-MOZZINI Y. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret. Aquatic Microbial Ecology, 2001, 24: 255-264
BERMAN-FRANK I, ROSENBERG G, LEVITAN O, et al. Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine Cyanobacterium trichodesmium. Environmental Microbiology, 2007, 9(6): 1415-1422
BITTAR T B, VIEIRA A A H, STUBBINS A, et al. Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. Limnology and Oceanography, 2015, 60(4): 1172-1194
BORISOVER M, LAOR Y, PARPAROV A, et al. Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin. Water Research, 2009, 43(12): 3104-3116
BRYM A, PAERL H W, MONTGOMERY M T, et al. Optical and chemical characterization of base-extracted particulate organic matter in coastal marine environments. Marine Chemistry, 2014, 162: 96-113
CHEN H, ZHENG B H, SONG Y H, et al. Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM. Aquatic Sciences, 2011, 73(1): 103-112
CHEN M L, KIM S H, JUNG H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications. Water Research, 2017, 121: 150-161
CHEN P, PAN D L, MAO Z H. Fluorescence measured using a field-portable laser fluorometer as a proxy for CDOM absorption. Estuarine, Coastal and Shelf Science, 2014, 146: 33-41
CHEN W Z, YI Y Y, YU X X, et al. Photochemical degradation of autochthonous dissolved organic matter from the culture media of Chlorella spp. Acta Scientiae Circumstantiae, 2012, 32(5): 1095-1103[陈文昭, 易月圆, 余翔翔, 等. 小球藻来源溶解有机质的光化学降解特性. 环境科学学报, 2012, 32(5): 1095-1103]
CHENG Z J, LU Z B, SHAO Z W, et al. Photodegradation of propaquizafop in water under UV irradiation: The identification of transformation products and elucidation of photodegradation pathway. Agronomy, 2024, 14(12): 2959
D’ANDRILLI J, MCCONNELL J R. Polar ice core organic matter signatures reveal past atmospheric carbon composition and spatial trends across ancient and modern timescales. Journal of Glaciology, 2021, 67(266): 1028-1042
DEL VECCHIO R, BLOUGH N V. Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling. Marine Chemistry, 2002, 78(4): 231-253
DITTMAR T, LENNARTZ S T, BUCK-WIESE H, et al. Enigmatic persistence of dissolved organic matter in the ocean. Nature Reviews Earth & Environment, 2021, 2(8): 570-583
DROZDOVA A N, KRYLOV I N, NEDOSPASOV A A, et al. Fluorescent signatures of autochthonous dissolved organic matter production in Siberian shelf seas. Frontiers in Marine Science, 2022, 9: 872557
ENGEL A, THOMS S, RIEBESELL U, et al. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature, 2004, 428(6986): 929-932
GAO P T, GUO L, GAO M C, et al. Regulation of carbon source metabolism in mixotrophic microalgae cultivation in response to light intensity variation. Journal of Environmental Management, 2022, 302: 114095
GRAEBER D, TENZIN Y, STUTTER M, et al. Bioavailable DOC: Reactive nutrient ratios control heterotrophic nutrient assimilation—An experimental proof of the macronutrient-access hypothesis. Biogeochemistry, 2021, 155(1): 1-20
GREEN S A, BLOUGH N V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography, 1994, 39(8): 1903-1916
GROSSART H P, BERMAN T, SIMON M, et al. Occurrence and microbial dynamics of macroscopic organic aggregates (lake snow) in Lake Kinneret, Israel, in fall. Aquatic Microbial Ecology, 1998, 14: 59-67
GUIDI L, LO PICCOLO E, LANDI M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Frontiers in Plant Science, 2019, 10: 174
GUO C C, SUN J, WANG X Z, et al. Distribution and settling regime of transparent exopolymer particles (TEP) potentially associated with bio-physical processes in the eastern Indian Ocean. Journal of Geophysical Research: Biogeosciences, 2021, 126(4): e2020JG005934
GUO C C, ZHANG G C, JIAN S, et al. The impacts of ambiguity in preparation of 80% sulfuric acid solution and shaking time control of calibration solution on the determination of transparent exopolymer particles. Acta Oceanologica Sinica, 2023, 42(4): 50-58
GUO K L, CHEN J, WANG X D, et al. Production of transparent exopolymer particles from two marine diatoms and its ecological significance. Marine Environmental Science, 2019, 38(5): 649-655[郭康丽, 陈洁, 王小冬, 等. 两种海洋硅藻透明胞外聚合颗粒物的产生及其生态学意义. 海洋环境科学, 2019, 38(5): 649-655]
GUO W D, YANG L Y, HONG H S, et al. Assessing the dynamics of chromophoric dissolved organic matter in a subtropical estuary using parallel factor analysis. Marine Chemistry, 2011, 124(1/2/3/4): 125-133
HE J, WU X, ZHI G Q, et al. Fluorescence characteristics of DOM and its influence on water quality of rivers and lakes in the Dianchi Lake basin. Ecological Indicators, 2022, 142: 109088
HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 2008, 53(3): 955-969
HERNES P J, BENNER R. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. Journal of Geophysical Research: Oceans, 2003, 108(C9): 3291
HULATT C J, THOMAS D N, BOWERS D G, et al. Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuarine, Coastal and Shelf Science, 2009, 84(1): 147-153
JANSSEN E M, ERICKSON P R, MCNEILL K. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan. Environmental Science & Technology, 2014, 48(9): 4916-4924
KANG Q Z, LIU Y, WU W G, et al. Microscale variations in the distribution and consumption of oxygen at the sediment-water interface in Sanggou Bay in summer. Progress in Fishery Sciences, 2024, 45(5): 96-108[康秦梓, 刘毅, 吴文广, 等. 夏季桑沟湾沉积物-水界面溶解氧分布和消耗的微观变化研究. 渔业科学进展, 2024, 45(5): 96-108]
KIEBER D J, MCDANIEL J, MOPPER K. Photochemical source of biological substrates in sea water: Implications for carbon cycling. Nature, 1989, 341(6243): 637-639
KOWALCZUK P, TILSTONE G H, ZABŁOCKA M, et al. Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and parallel factor analysis. Marine Chemistry, 2013, 157: 170-184
KUMARI S, SATAPATHY S, DATTA M, et al, Adaptation of microalgae to temperature and light stress. In: ROY S, MATHUR P, CHAKRABORTY A P, et al (Eds). Plant stress: Challenges and management in the new decade. Advances in Science, Technology and Innovation. Springer, Cham, 2022, 123-134. https://doi.org/10.1007/ 978-3-030-95365-2_8
LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River, Belgium). Biogeochemistry, 2017, 136(2): 191-211
LAZZARI P, ÁLVAREZ E, TERZIĆ E, et al. CDOM spatiotemporal variability in the Mediterranean Sea: A modelling study. Journal of Marine Science and Engineering, 2021, 9(2): 176
LI M, ZHU W, GAO L, et al. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. Journal of Applied Phycology, 2013, 25(4): 1023-1030
LI P H, CHEN L, ZHANG W, et al. Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze Estuary and its adjacent sea using fluorescence and parallel factor analysis. PLoS One, 2015, 10(6): e0130852
LI W, CAI F, DING C, et al. Review on ecotoxicological effects of antibiotics and their removal by microalgae. Asian Journal of Ecotoxicology, 2022, 17(5): 226-238[李威, 蔡峰, 丁淳, 等. 微藻对抗生素的生态毒性响应和消除作用的研究进展. 生态毒理学报, 2022, 17(5): 226-238]
LI Z C, DUAN H T, SHEN Q S, et al. The changes of water color induced by chromophoric dissolved organic matter (CDOM) during the formation of black blooms. Journal of Lake Sciences, 2015, 27(4): 616-622[李佐琛, 段洪涛, 申秋实, 等. 藻源性湖泛发生过程CDOM变化对水色的影响. 湖泊科学, 2015, 27(4): 616-622]
LIU J F, HU X J, CAO Y C, et al. Community characteristics of planktonic microalgae in aquaculture ponds of different modes in Ningxia in summer. Progress in Fishery Sciences, 2023, 44(2): 161-173[刘锦帆, 胡晓娟, 曹煜成, 等. 宁夏地区不同模式养殖池塘夏季浮游微藻群落特征. 渔业科学进展, 2023, 44(2): 161-173]
LIU J, ZHOU R Y, ZHANG X. Binding of calcium and magnesium ions to terrestrial chromophoric dissolved organic matter (CDOM): A combination of steady-state and time-resolved fluorescence study. Water, 2021, 13(16): 2182
LIU K, YANG L, YANG G P, et al. Distribution and photodegradation behavior of CDOM along 130°E in the western Pacific Ocean. Haiyang Xuebao, 2020, 42(10): 121-131[刘可, 杨琳, 杨桂朋, 等. 西太平洋秋季130°E断面有色溶解有机物的分布特征及光降解行为研究. 海洋学报, 2020, 42(10): 121-131]
LIU L Z, QIN B Q, HUANG Q. Advances in transparent exopolymer particles (TEP) in freshwaters. Advances in Earth Science, 2014, 29(10): 1149-1157[刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展. 地球科学进展, 2014, 29(10): 1149-1157]
LIU R Q, HE M L, WANG C H. Progress in research on application of microalgae bait in echinoderm culture. Progress in Fishery Sciences, 2021, 42(3): 17-25[刘瑞卿, 何梅琳, 王长海. 微藻饵料在经济棘皮动物养殖中的应用及研究进展. 渔业科学进展, 2021, 42(3): 17-25]
LIU S S, FENG W Y, SONG F H, et al. Photodegradation of algae and macrophyte-derived dissolved organic matter: A multi-method assessment of DOM transformation. Limnologica, 2019, 77: 125683
LIU Y Y, QIN J H, SUN H. UV-VIS spectral characteristics of dissolved organic matter (DOM) of the natural alpine rivers in the western Sichuan Province. Acta Scientiae Circumstantiae, 2018, 38(9): 3662-3671[刘堰杨, 秦纪洪, 孙辉. 川西高海拔河流中溶解性有机质(DOM)紫外-可见光吸收光谱特征. 环境科学学报, 2018, 38(9): 3662-3671]
LØNBORG C, CARREIRA C, JICKELLS T, et al. Impacts of global change on ocean dissolved organic carbon (DOC) cycling. Frontiers in Marine Science, 2020, 7: 466
LUO Y Q, WAN Z W, YAN C X, et al. Spectral characteristics of dissolved organic matter in sediments from Poyang Lake. Environmental Science, 2022, 43(2): 847-858[罗燕清, 万智巍, 晏彩霞, 等. 鄱阳湖沉积物溶解性有机质光谱特征. 环境科学, 2022, 43(2): 847-858]
MARI X, PASSOW U, MIGON C, et al. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Progress in Oceanography, 2017, 151: 13-37
MAYER L M, SCHICK L L, LODER T C. Dissolved protein fluorescence in two Maine estuaries. Marine Chemistry, 1999, 64(3): 171-179
MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 2001, 46(1): 38-48
MOPPER K, KIEBER D J. Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus. In: HANSELL D A, CARLSON C A. Biogeochemistry of marine dissolved organic matter. Academic Press, 2002, 455-507
MOPPER K, ZHOU J, SRI RAMANA K, et al. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(1): 47-73
MOPPER K, ZHOU X L, KIEBER R J, et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, 1991, 353(6339): 60-62
MOSTOFA K M G, LIU C Q, MINAKATA D, et al, Photoinduced and microbial degradation of dissolved organic matter in natural waters. In: MOSTOFA K M G, YOSHIOKA T, MOTTALEB A, et al (Eds). Photobiogeochemistry of organic matter. Environmental Science and Engineering. Springer, Berlin, Heidelberg. 2013, 273-364. https://doi.org/10.1007/978-3-642-32223-5_4
MUELLER B, DEN HAAN J, VISSER P M, et al. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Scientific Reports, 2016, 6: 23248
MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 2008, 108(1/2): 40-58
NEILEN A D, HAWKER D W, O’BRIEN K R, et al. Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition. Chemosphere, 2017, 184: 969-980
NIETO-CID M, ÁLVAREZ-SALGADO X A, PÉREZ F F. Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnology and Oceanography, 2006, 51(3): 1391-1400
OBERNOSTERER I, REITNER B, HERNDL G J. Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton. Limnology and Oceanography, 1999, 44(7): 1645-1654
ORELLANA M V, VERDUGO P. Ultraviolet radiation blocks the organic carbon exchange between the dissolved phase and the gel phase in the ocean. Limnology and Oceanography, 2003, 48(4): 1618-1623
ORTEGA-RETUERTA E, PASSOW U, DUARTE C M, et al. Effects of ultraviolet B radiation on (not so) transparent exopolymer particles. Biogeosciences, 2009, 6(12): 3071-3080
PAINTER S C, LAPWORTH D J, WOODWARD E M S, et al. Terrestrial dissolved organic matter distribution in the North Sea. Science of the Total Environment, 2018, 630: 630-647
PASSOW U, ALLDREDGE A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography, 1995, 40(7): 1326-1335
PASSOW U. Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 2002, 55(3/4): 287-333
PEREZ-GARCIA O, ESCALANTE F M E, DE-BASHAN L E, et al. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 2011, 45(1): 11-36
PODGORSKI D C, WALLEY J, SHIELDS M P, et al. Dispersant-enhanced photodissolution of macondo crude oil: A molecular perspective. Journal of Hazardous Materials, 2024, 461: 132558
QIN R Y, LI Y F, LIU J G. Effects of salinity, light, and temperature and their interactions on Dunaliella salina growth. Marine Sciences, 2021, 45(11): 73-81[秦瑞阳, 李永富, 刘建国. 盐度、光强和温度对盐生杜氏藻生长的影响及其交互作用. 海洋科学, 2021, 45(11): 73-81]
RAMAIAH N, YOSHIKAWA T, FURUYA K. Temporal variations in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic ria in Japan. Marine Ecology Progress Series, 2001, 212: 79-88
RETELLETTI BROGI S, DERRIEN M, HUR J. In-depth assessment of the effect of sodium azide on the optical properties of dissolved organic matter. Journal of Fluorescence, 2019, 29(4): 877-885
ROMERA-CASTILLO C, SARMENTO H, ALVAREZ-SALGADO X A, et al. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Applied and Environmental Microbiology, 2011, 77(21): 7490-7498
SHAMMI M, PAN X L, MOSTOFA K M G, et al. Photo-flocculation of microbial mat extracellular polymeric substances and their transformation into transparent exopolymer particles: Chemical and spectroscopic evidences. Scientific Reports, 2017, 7(1): 9074
SONG G S, RICHARDSON J D, WERNER J P, et al. Carbon monoxide photoproduction from particles and solutes in the Delaware Estuary under contrasting hydrological conditions. Environmental Science & Technology, 2015, 49(24): 14048-14056
SONG X Y, ZHAO M Y, CHEN A Q, et al. Effects of input of terrestrial materials on photodegradation and biodegradation of DOM in rivers: The case of Heilongjiang River. Journal of Hydrology, 2022, 609: 127792
STEDMON C A, MARKAGER S, KAAS H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science, 2000, 51(2): 267-278
SUN J. Transparent exopolymer particles (TEP) and aggregation web in marine environments. Acta Ecologica Sinica, 2005, 25(5): 1191-1198[孙军. 海洋中的凝集网与透明胞外聚合颗粒物. 生态学报, 2005, 25(5): 1191-1198]
THORNTON D. Diatom aggregation in the sea: Mechanisms and ecological implications. European Journal of Phycology, 2002, 37(2): 149-161
TURNER J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progress in Oceanography, 2015, 130: 205-248
VÄHÄTALO A V, SALONEN K, SALKINOJA-SALONEN M, et al. Photochemical mineralization of synthetic lignin in lake water indicates enhanced turnover of aromatic organic matter under solar radiation. Biodegradation, 1999, 10(6): 415-420
VÄHÄTALO A V, WETZEL R G. Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures. Marine Chemistry, 2004, 89(1/2/3/4): 313-326
WANG C, GUO W D, LI Y, et al. Hydrological and biogeochemical controls on absorption and fluorescence of dissolved organic matter in the northern South China Sea. Journal of Geophysical Research: Biogeosciences, 2017, 122(12): 3405-3418
WANG X C, CHEN H, LEI K, et al. UVA illumination-induced optical coupling between tryptophan and natural dissolved organic matter. Environmental Science and Pollution Research, 2015, 22(21): 16969-16977
WANG Y R, CHEN X C, CHEN B F, et al. The release of pollutants in sediment-water interface after algal-debris accumulated in sediments. Acta Scientiae Circumstantiae, 2018, 38(1): 142-153[王亚蕊, 陈向超, 陈丙法, 等. 藻屑堆积对沉积物-水界面污染物的释放效应. 环境科学学报, 2018, 38(1): 142-153]
WEI G L, ZHANG S C, CAI Z H, et al. Research progress and ecological roles of phytoplankton cysts. Chinese Journal of Applied Ecology, 2020, 31(2): 685-694[韦光领, 张士春, 蔡中华, 等. 浮游植物孢囊的研究进展与生态意义. 应用生态学报, 2020, 31(2): 685-694]
WEI Z Z, LI N, ZHANG X Y, et al. Characterizing photochemical production carboxyl content of dissolved organic matters using absorbance spectroscopy combined with FT-ICR MS. Chemosphere, 2023, 344: 140352
WEN Y S, DENG J M, MAO Z H, et al. Effect of the Fresnel reflection of a water surface on chlorophyll fluorescence line height at approximately 761 nm. National Remote Sensing Bulletin, 2018, 22(3): 424-431
WHEELER K I, LEVIA D F, HUDSON J E. Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (PARAFAC) modeling and self-organizing maps. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2233-2250
WILLIAMS C J, YAMASHITA Y, WILSON H F, et al. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnology and Oceanography, 2010, 55(3): 1159-1171
WU K B, ZHOU J, CAI Z H. Review of algal phycosphere: Structure and ecological function. Chinese Bulletin of Life Sciences, 2021, 33(5): 535-545[吴科比, 周进, 蔡中华. 藻际环境微生态结构与功能的研究进展. 生命科学, 2021, 33(5): 535-545]
WURL O, EKAU W, LANDING W M, et al. Sea surface microlayer in a changing ocean-A perspective. Elementa: Science of the Anthropocene, 2017, 5: 31
WURL O, MILLER L, VAGLE S. Production and fate of transparent exopolymer particles in the ocean. Journal of Geophysical Research: Oceans, 2011, 116(C7): C00H13
XIE H X, ZAFIRIOU O C, CAI W J, et al. Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environmental Science & Technology, 2004, 38(15): 4113-4119
XU H C, CAI H Y, YU G H, et al. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Research, 2013, 47(6): 2005-2014
WANG X C, CHEN H, LEI K, et al. UVA illumination-induced optical coupling between tryptophan and natural dissolved organic matter. Environmental Science and Pollution Research, 2015, 22(21): 16969-16977
YAMASHITA Y, CORY R M, NISHIOKA J, et al. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(16): 1478-1485
YAMASHITA Y, JAFFÉ R, MAIE N, et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnology and Oceanography, 2008, 53(5): 1900-1908
YAN J H, LI K, WANG W T, et al. Changes in dissolved organic carbon and total dissolved nitrogen fluxes across subtropical forest ecosystems at different successional stages. Water Resources Research, 2015, 51(5): 3681-3694
YE J. Construction and electroporation of GFP expression vector of Dunaliella salina. Master’s Thesis of Anhui Agricultural University, 2006[叶霁. 杜氏盐藻GFP表达载体的构建及电转化. 安徽农业大学硕士研究生学位论文, 2006]
YUAN Z F, MEI L, XIE S S, et al. Preparation of polyethylene porous tube membrane and fouling mechanism during the filtration process. Desalination and Water Treatment, 2022, 273: 81-91
ZENG L. Construction of double selective transformation vector pchlN-CAT-BAR and transformation for chloroplast of Dunaliella salina. Master’s Thesis of Zhengzhou University, 2010[曾磊. 杜氏盐藻叶绿体双筛选载体pchlN-CAT-BAR的构建及转化. 郑州大学硕士研究生学位论文, 2010]
ZHANG Q Y, SUN W, DU Y X, et al. Biodegradation of algae-derived organic matter (I-DOM) from Lake Taihu. Environmental Science, 2021, 42(4): 1870-1878[张巧颖, 孙伟, 杜瑛珣, 等. 太湖蓝藻胞内有机质的微生物降解. 环境科学, 2021, 42(4): 1870-1878]
ZHANG T, MA H, HONG Z C, et al. Photo-reactivity and photo-transformation of algal dissolved organic matter unraveled by optical spectroscopy and high-resolution mass spectrometry analysis. Environmental Science & Technology, 2022, 56(18): 13439-13448
ZHANG X Y, XIAO F, YAN M Q, et al. Photochemical-biodegradation mechanism of intracellular dissolved organic matter from river algae. Chinese Journal of Environmental Engineering, 2023, 17(5): 1496-1503[张心怡, 肖峰, 晏明全, 等. 河道藻源胞内有机质光化学-生物降解机制. 环境工程学报, 2023, 17(5): 1496-1503]
ZHANG Y L, LIU X H, OSBURN C L, et al. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra. PLoS One, 2013, 8(10): e77515
ZHANG Y P, YANG G P. A spectrophotometric method for determination of dissolved monosaccharides and polysaccharides in seawater. Periodical of Ocean University of China, 2009, 39(2): 327-332[张艳萍, 杨桂朋. 分光光度法测定海水中溶解单糖和多糖. 中国海洋大学学报(自然科学版), 2009, 39(2): 327-332]
ZHU W Z, WANG S H, WANG D Z, et al. Contrasting effects of different light regimes on the photoreactivities of allochthonous and autochthonous chromophoric dissolved organic matter. Chemosphere, 2023, 332: 138823
ZHU W Z, YANG G P, ZHANG H H. Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters. Science of the Total Environment, 2017, 607: 214-224
ZHU W Z, ZHANG J, YANG G P. Mixing behavior and photobleaching of chromophoric dissolved organic matter in the Changjiang River estuary and the adjacent East China Sea. Estuarine, Coastal and Shelf Science, 2018, 207: 422-434