杜氏盐藻藻液中溶解有机物和透明胞外聚合物的光化学行为研究
doi: 10.3969/j.issn.2095-9869.20241030004
蔡进潮 , 章瑞 , 王书恒 , 吴俊慷 , 马伟伟 , 朱文卓
浙江海洋大学海洋科学与技术学院 浙江 舟山 316022
基金项目: 浙江省自然科学基金(LQ22D060003)、舟山科技计划(2023C41024)、浙江海洋大学大学生创新训练计划(2022-A-007) 和浙江省优秀研究生课程建设项目共同资助
Photochemical Behavior of Dissolved Organic Matter and Transparent Exopolymer Particles in the Algal Sap of Dunaliella salina
CAI Jinchao , ZHANG Rui , WANG Shuheng , WU Junkang , MA Weiwei , ZHU Wenzhuo
Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022 , China
摘要
杜氏盐藻(Dunaliella salina)是一种适应于高盐海水环境的微藻,作为海洋生态系统中的初级生产者,能够通过光合作用合成并分泌大量的溶解有机物(dissolved organic matter, DOM)以及透明胞外聚合物(transparent exopolymer particles, TEP),这些分泌物是海洋中自生源大分子物质的重要来源,对海洋生物地球化学循环具有显著的影响。本研究选取杜氏盐藻为对象,探究光照条件下杜氏盐藻介导有色溶解有机物(colored dissolved organic matter, CDOM)、碳水化合物(多糖和单糖)和 TEP 的组分变化以及这些有机物之间的相互关系。结果显示,无藻环境中的 CDOM 发生光降解,导致大分子化合物裂解形成小分子化合物或分解为无机物,其生成单糖量较大;而在有藻环境中,由于藻类的影响,光化学反应促进了 DOM 的生成,且多糖的生成量增加;通过三维荧光光谱–平行因子分析(EEMs-PARAFAC)模型,分析荧光溶解有机物(fluorescent DOM, FDOM),共鉴定出 5 种荧光组分,包括 3 种类蛋白质组分(C1、C2 和 C3)和 2 种腐殖质样组分(C4 和 C5),无论在有藻还是无藻环境中,均以类色氨酸基团为主,DOM 多来源于藻光合作用和死亡分解的产物。本研究还发现,尽管光降解是 TEP 损失的重要过程,但仍存在 DOM 发生光聚合自发凝聚形成 TEP 的过程,藻类以及微生物也会释放新的 TEP,但其释放的量以及光聚合的量均小于光降解的量;此外,相关性研究发现,无藻环境中碳水化合物(多糖和单糖)与 TEP 之间均无显著相关性,但微藻环境下,多糖(R²=0.822,P<0.05)和单糖(R²=0.821,P<0.05)与 TEP 浓度之间呈现显著负相关;而 CDOM 与 TEP 在无藻环境中表现为正相关(R²=0.698,P<0.05),在有藻环境表现为较弱的负相关(R²=0.612, P=0.07),这表明微藻显著影响了 CDOM、碳水化合物(多糖和单糖)与 TEP 之间的光化学转化过程。本研究为解释在微藻环境下 DOM、碳水化合物和 TEP 的光反应响应机制,理解光化学过程在物质循环中的作用提供了宝贵的数据,对于揭示海洋生物地球化学循环的复杂机制具有重要的科学意义。
Abstract

Dunaliella salina is a microalgae adapted to a high-salinity seawater environment. As a major primary producer in the ocean, it produces and releases a large amount of marine autochthonous dissolved organic matter (DOM) into the environment through photosynthesis. Under suitable conditions (e.g., pH and ionic strength), the produced DOM can transform into transparent exopolymer particles (TEPs) via polymerization. Algal cells and bacteria also release large amounts of dissolved polysaccharides in the water column, and polysaccharide-rich fractions are good precursors for TEP formation. These precursors can form a large number of TEPs through coagulation, gelation, and annealing. In addition, TEPs can be generated through abiotic processes, and TEPs are formed by DOM at the microscale through adsorption on surfaces and foaming. Photochemical reactions affect TEP formation on the ocean surface. TEP formation on the surface layer promotes DOM transport from the sea surface to the deep sea. The photochemical process of DOM in the ocean can convert large molecules of DOM and TEPs into small molecules. Subsequently, gases such as carbon dioxide are released during conversion. This process is a key factor driving the changes in oceanic DOM reservoirs, cycling of matter in seawater, and sequestration of deep-sea carbon.

In this study, the changes in the components of DOM, carbohydrates (polysaccharides and monosaccharides), and TEPs mediated by D. salina and their interrelationships under light conditions were investigated by conducting 60 h light irradiation experiments on algal sap during stable growth. Results showed that the photodegradation of CDOM in algal-free environments led to the cleavage of macromolecular compounds to form small-molecule compounds or their decomposition into inorganic substances, which produced larger amounts of monosaccharides. In microalgal environments, photochemical reactions facilitated DOM production due to the influence of algae, and polysaccharide production was increased. Through the three-dimensional fluorescence spectroscopy-parallel factor analysis model, fluorescent DOM, five fluorescent fractions, three protein-like fractions (C1, C2, and C3), and two humus-like fractions (C4 and C5) were identified. In both algal and algal-free environments, the tryptophan-like groups were predominant, and DOM was mostly derived from the products of algal photosynthesis and death decomposition. Although photodegradation is an important process of TEP loss, DOM still undergoes photopolymerization for spontaneous coalescence to form TEPs. Algae and microorganisms also release new TEPs, but the amount of their release and photopolymerization is smaller than the amount of photodegradation. Moreover, correlation studies revealed no significant correlation between carbohydrates (polysaccharides and monosaccharides) and TEPs in the algal-free and microalgae environments. Polysaccharides (R²=0.822, P<0.05) and monosaccharides (R²=0.821, P<0.05) showed a significant negative correlation with TEP concentration in the microalgae environment, whereas CDOM and TEP showed a positive correlation in the algal-free environment (R²=0.698, P<0.05) and a weak negative correlation in the algal environment (R²=0.612, P=0.07). This result indicated that microalgae significantly affected the photochemical transformation between CDOM, carbohydrates (polysaccharides and monosaccharides), and TEP. This study may serve as a basis for elucidating the mechanisms of DOM, carbohydrate, and TEP response to light in microalgal environments, understanding the role of photochemical processes in the ocean in carbon and nutrient cycling, and revealing the complex mechanisms of marine biogeochemical cycling.

微藻在海洋生态系统中扮演着至关重要的角色,可调节水体的透明度、酸碱度,吸收水体的营养盐,增加水中溶解氧(DO)等,影响着全球碳循环、海洋食物链以及生物地球化学循环过程( 刘锦帆等,2023)。其中,在微藻生长过程中释放的溶解有机物(dissolved organic matter,DOM)和透明胞外聚合物(transparent exopolymer particles,TEP)是生态系统结构和食物链的重要组成组分,会对海洋生态系统的物质循环和能量流动产生深远影响(Mari et al,2017)。
DOM 是水体中一类极其复杂的有机混合物,是水生生态系统中一种重要的、活跃的化学组分,其来源包括藻类的代谢产物、死亡细胞的分解产物、周围环境中输入的有机物质等,是调节水体代谢过程和生物地球化学过程的重要参与者(Lønborg et al,2020; Zhu et al,2017)。有色溶解有机物(colored dissolved organic matter,CDOM)作为 DOM 主要的光化学活性组分,由腐殖酸和富里酸等不同的化合物组成,可吸收紫外光和可见光,在 DOM 的光化学反应中起着重要作用。它不仅可以阻止有害紫外线对水生生物的伤害,保护水生生态系统,还能产生一些小分子有机物,为浮游植物所利用;此外,其对可见光的吸收还能抑制光合作用,从而影响海洋初级生产力(Bai et al,2014; Guo et al,2011)。CDOM 吸光后能发出荧光的组分称为荧光溶解有机物(fluorescent DOM,FDOM),可采用三维荧光光谱(EEMs)结合平行因子分析技术(PARAFAC)探究 CDOM 的来源(Liu et al,2021 Wang et al,2017)。此外,由单糖(如葡萄糖、果糖)和多糖(如纤维素、淀粉)组成的碳水化合物,是海洋 DOM 的一部分,其通过浮游植物和细菌释放到海水中,是海洋中动态碳源最丰富和反应活性最高的组分(Azam et al,1983),其光化学反应会导致其结构和功能发生变化,使某些复杂碳水化合物发生降解,生成小分子量的有机物(比如多糖可继续降解为单糖)(Mopper et al,1991)。这些小分子 DOM 通常具有更高的生物活性,因此更易被微生物利用参与食物循环和碳循环(Vähätalo et al,2004; Zhu et al,2018)。TEP 是由藻类等生物分泌到细胞外的一类结构复杂且具有较高分子量的有机物质,具有高黏性等特点。藻类等生物通过光化学反应会产生自生源 DOM(Thornton,2002),在适宜的条件下(如 pH 和离子强度),这些自生源 DOM 可以通过聚合反应形成 TEP(Engel et al,2004; Wurl et al,2011)。其次,藻细胞和细菌的光化学反应过程释放出的多糖前体物质,通过凝结、凝胶化、退火过程也会形成大量 TEP(郭康丽等,2019; 刘丽贞等,2014; Passow,2002; 孙军,2005)。研究还发现,形成的胶体状 TEP 可吸附水环境中游离的氨基酸、金属离子等,并且还能黏附其他 DOM、细菌、碎屑或微型浮游植物等形成不同粒径的聚集体(Alldredge et al,1993),这些聚集体可以作为微型浮游动物的食物来源之一(Turner,2015)。因此,TEP 可以通过形成凝聚网将生物链和微食物环连接起来,在海洋生态系统中具有重要的衔接作用(Passow,2002)。此外,最近研究表明,光照会影响海洋表层的 TEP 的形成,进而增加一些有机质从海表面向深海的输送(Guo et al,2021; Orellana et al,2003; Shammi et al,2017),在沉降过程中,TEP 能进一步吸附周围水体中的碳元素,增加向下输送的碳量,将更多的碳封存在海底,对大气 CO2 浓度起到反馈调节作用(Wurl et al,2017; Xie et al,2004)。因此,TEP 也被认为是海洋生态系统碳循环的重要组成部分。
然而,目前关于藻类生长稳定期中光化学行为产生 DOM 和 TEP,以及 DOM 和 TEP 的光化学迁移转化的过程尚不清楚。近期研究主要集中在藻类的培养条件、生理特性等对 TEP 和可溶性物质产生的影响(郭康丽等,2019)。因此,本研究选取具有独特生物学特性和生态功能的典型嗜盐藻类杜氏盐藻(Dunaliella salina)为研究对象(秦瑞阳等,2021),通过对稳定期的盐藻进行 60 h 的光辐照实验,探究光照条件下杜氏盐藻介导的 CDOM、碳水化合物(多糖和单糖)和 TEP 的组分变化以及这些有机物之间的相互关系,旨在阐明微藻中 DOM、碳水化合物和 TEP 的光反应响应机制,理解海洋中光化学过程在物质循环和碳循环中的重要作用。
1 材料与方法
1.1 杜氏盐藻的培养
本研究采用实验室培养的杜氏盐藻,使用 f/2 培养基(配方:100 mL 海水、1 mL NaNO3、0.001 mL NaH2PO4、0.5 mL 维生素溶液、l mL Na2SiO3·9H2O 溶液、0.1 mL 微量元素)(康秦梓等,2024),置于光照培养箱培养,温度控制在 23~28℃之间,光照强度设定为 6 500 lx,每天振荡 2 次。藻密度随时间变化的情况见图1。经过 19 d 的培养,待盐藻达到稳定期后,将藻取出,用于后续的光照实验(叶霁,2006; 曾磊,2010)。
1.2 藻液光辐照实验
将 1.1 培养的藻分为两组,每组设置 3 个平行,经 0.4 μm 聚碳酸酯滤膜过滤不含藻细胞的为 A 组,未经过滤含有藻细胞的为 B 组(图2)。之后将上述两组进行光辐照实验,采用环形光反应器(PL-05,北京普林塞斯),该反应器配备了 1000 W 氙灯以提供近距离太阳光谱模拟,控制反应器的温度(in situ)为(25±1)℃,光照强度为 11 500 lx,光辐照阶段总时长为 60 h,每隔 12 h 取样一次。所有反应管均放置在光化学反应仪的恒温样品水槽中,保证光辐照以外的其他条件均一致,从而有效避免细菌增殖对实验结果造成干扰(Guidi et al,2019; 张心怡等,2023)。
1杜氏盐藻生长曲线
Fig.1Growth curve of D. salina
2不同处理样品
Fig.2Samples with different treatments
1.3 样品测定与分析
1.3.1 CDOM 紫外可见吸收光谱
将样品立即过滤,得到的溶解态组分冷冻(–20℃)保存,进行统一测定,使用 10 cm 的石英比色皿测样,以 Milli-Q 超纯水作为空白对照,在紫外分光光度计下检测,将所得紫外吸收值扣除空白吸收值后进行基线漂移和散射校正(Green et al,1994),通过减去 700~800 nm 范围内的平均值以校正由细小颗粒物散射和仪器引起的基线漂移(刘可等,2020)。吸收系数按式(1)计算:
a(λ)=2.303×Aλ-λ0/L
(1)
式中,λ 为测定波长(nm),λ0为空白波长(nm),A 为测定波长的吸光度,L 为比色皿光程(cm)。以 a(254)表征 CDOM 的相对浓度,a(254)可以很好地表征海洋中存在的较小化合物的浓度,如共轭双碳化合物等,这类物质通常具有光不稳定的特性(Helms et al,2008),故本研究选择 a(254)来表征 CDOM 浓度。
采用光谱斜率比值(SR)表征 CDOM 分子量变化, SRS275~295 nm S350~400 nm 二者比值,与相对分子质量成反比(Helms et al,2008; 罗燕清等,2022)。SR 可由式(2)计算:
SR=S275295nm/S350400nm
(2)
1.3.2 CDOM 三维荧光光谱
用荧光分光光度计(日立 F-7000,日本)进行三维荧光光谱扫描测定,其激发波长范围设定为 200~400 nm,发射波长范围为 250~550 nm,且发射和激发波长的狭缝宽度为 5 nm。测定以 Milli-Q 超纯水为空白,在所有样品进行 EEMs 扫描前,用 Milli-Q 超纯水进行 10 倍稀释,以避免高吸收值的内部效应引起测量误差。将数据在 MATLAB2024a 中运行 DomFluor 工具箱,随后对三维荧光光谱数据进行 PARAFAC,并得到组分模型(Zhu et al,2017)。
1.3.3 碳水化合物
利用 2,4,6-三吡啶基三嗪(TPTZ)与样品中游离态单糖的定量显色反应,测定 596 nm 处吸光度,表征碳水化合物浓度。
使用标准葡萄糖物质配制不同梯度的标准葡萄糖溶液,得到工作曲线。由工作曲线即可得到样品中游离态单糖的浓度,多糖组分需先水解样品,再测定水解后样品中总糖浓度,总糖浓度与单糖浓度之差即多糖浓度(张艳萍等,2009)。
1.3.4 TEP
TEP 的测定按照黄原胶标准物质法,即 TEP 浓度以黄原胶质量当量浓度表示(Passow et al,1995)。使用 0.4 μm 孔径的聚碳酸酯膜将样品在低于 100 mm Hg 负压下恒压过滤,大分子 TEP 截留在膜上,用 Milli-Q 超纯水冲洗 3 遍后,滴加 1 mL AB 染液,停留 2~5 s,立即将未结合的染液冲洗并过滤,使用 80%(V/V)硫酸浸泡滤膜 2 h,通过紫外–可见光谱于 787 nm 处测定酸浸泡样品的吸光度值。根据以下公式计算 TEP 浓度(μg/L):
CTEP=E787nm-B787nmV×fx
(3)
其中,E787 nm 为样品在 787 nm 的吸光度,B787 nm 为空白样品的吸光度,V 为每个样品的过滤体积(L),fx 为校正因子。
在下列表达式之后计算归一化 TEP 光解率(Ortega-Retuerta et al,2009):
-TEP(%)=TEPtf-TEPt0/tTEPt0×100
(4)
tft0 分别是最终时间和初始时间,t 为孵化时间(d)。
1.4 统计分析
使用 Excel 2021对原始数据进行处理,并在 SPSS 23.0 软件上进行统计分析,应用 MATLAB 2024a 中的 DOM Fluor 工具箱,对三维荧光光谱数据进行平行因子分析,利用 Origin 2021 软件对所得数据进行数据统计分析和可视化处理。
2 结果与分析
2.1 CDOM 的光化学行为研究
2.1.1 吸光系数 a(254)
图3a为光照处理下吸收系数 a(254)随辐照时间的变化曲线。A 组 a(254)初始值为 1.82 m–1,60 h 的值为 1.34 m–1,降解率为 26.37%, a(254)在 0~12 h 显著下降,表明不含藻细胞的溶液中的 CDOM 发生显著的降解反应。Kieber 等(1989)发现,CDOM 是惰性的,不像多糖和氨基酸等物质容易被细菌等生物利用,但其具有显著的光化学活性,会使大分子量的 CDOM 发生光降解产生分子量较低的化合物。此外,研究证实,光化学反应后,CDOM 的性质会发生变化,如粒径的变化(Vähätalo et al,1999)。同时,CDOM 在光照下发生光漂白反应,生成无色溶解有机碳(DOC),导致其光吸收能力降低(Del Vecchio et al,2002; 刘堰杨等,2018; Song et al,2015),从而使 CDOM 量减少。但 CDOM 的光降解只发生在前 12 h,后 48 h 中 CDOM 的含量基本不变,这可能是由于经过 0.4 μm 滤膜过滤后,一些较小尺寸的微生物或酶类物质仍能参与对 CDOM 的分解过程。然而,随着辐照时间的延长,CDOM 中的生物活性组分被消耗殆尽,剩余部分对紫外线和可见光的吸收能力减弱,导致 CDOM 降解变缓,浓度趋于恒定(Cheng et al,2024; Lazzari et al,2021)。
相比之下,B 组 a(254)反应初始值为 3.66 m–1, 60 h 后上升至 4.01 m–1,生成率为 8.73%,a(254)在前 24 h 内上升,说明存在藻细胞的溶液中发生光生成现象。研究发现,浮游植物光合作用衍生的化合物会不断转化为 CDOM 和其他不稳定的化合物(Obernosterer et al,1999),其中一部分会被微生物利用,另外一部分会悬浮在溶液中(李威等,2022; 李佐琛等,2015),而且微生物(异养细菌、古细菌和真核微生物)和藻类死亡后细胞裂解会分泌大量 DOM(蛋白质和核酸等)(Dittmar et al,2021)。此外,对溶解木质素酚的光化学和微生物降解研究发现,微生物降解和絮凝对 DOM 浓度和组分会产生影响(Hernes et al,2003)。因此,在藻的影响下,CDOM 的量会增加。而 24 h 后 a(254)缓慢下降是因为随着辐照时间的延长,生成的 DOM 等有机物质中的不饱和键和其他活性基团受到紫外光或可见光的作用发生光降解,导致分子结构发生变化,使 CDOM 减少(Zhu et al,2023)。此外,有研究表明,在持续的光照下,藻对紫外线和可见光的吸收能力也会减弱,这是由于其他化学转化过程所致(Liu et al,2021; Chen et al,2014)。
2.1.2 光谱斜率比值(SR
图3bSR 随辐照时间的变化曲线,A 组 SR 在 60 h 辐照过程中呈现持续增加趋势,其整体增加量为 76.00%,表明光化学过程导致 CDOM 分子量降低,这与 Helms 等(2008)Zhang 等(2013)的研究结果一致。此外,研究发现,过滤较大的颗粒或细胞碎片后,剩余的 CDOM 可能会经历更有效的光化学反应,使 CDOM 的分子量降低,芳香性减弱,导致光谱特征发生变化,特别是对短波的吸收减少而对长波的吸收相对增加(Wei et al,2023)。也有研究表明,去除了较大颗粒和悬浮物,剩余溶液中的光化学活性组分将更加集中,导致吸收光的能力发生变化,进而影响 SRWen et al,2018)。
而 B 组 SR在 60 h 辐照过程中从 1.31 降低至 0.57,表明 B 组在光化学过程前 12 h 内存在大分子物质的生成过程。有研究表明,光照会促进藻细胞和微生物的代谢活动,分泌更多的多糖分子(如胞外多糖 EPS)(Berman et al,2011),也会通过光合作用合成新的复杂的多糖(如纤维素、淀粉)(Hulatt et al,2009)。此外,死亡后的藻类细胞、藻类排泄物及初级生产产生的物质被细菌分解后会释放大量的大分子 DOM(蛋白质和核酸等)(Neilen et al,2017),所以这些新合成的物质是 DOM 分子量增大的原因。12 h 后其呈现较小幅度的上升,因为随着光照时间的延长藻类合成作用逐渐减弱,藻类生物活性降低,光降解作用逐渐增强(Helms et al,2008),使 SR 有所回升。而研究表明,光化学降解和生物降解过程会在长时间光照中逐渐达到动态平衡状态(Chen et al,2011; McKnight et al,2001),这会使 B 组 SR 逐渐趋于稳定。
2.1.3 CDOM 荧光组分
图4为 5 种 FDOM 荧光组分的荧光光谱曲线,其中,3 种为类蛋白质组分(C1~C3),2 种为腐殖质样组分(C4 和 C5)(表1)。C1 组分[激发波长 Ex/发射波长 Em=215(255)/295 nm]荧光峰的位置与 D'Andrilli 等(2021)发现的苯丙氨酸、酪氨酸和单宁酸类荧光特征相似,且与 Murphy 等(2008)发现的芳香族氨基酸“T”峰(酪氨酸)和“B”峰(色氨酸)荧光组分相似,其可能来源于简单的生物降解过程。C2 发射波长为 340 nm,激发波长分别为 220 nm 和 275 nm,与 Bittar 等(2015)发现的海洋异养原核生物的类蛋白质荧光特征类似,与 Lambert 等(2017)发现的木质素分解产物有关的类蛋白质样相似;且大量研究表明,C2 与游离溶解的色氨酸有非常相似的光谱特性,主要来自自生源生物(Brym et al,2014; Graeber et al,2021; Retelletti Brogi et al,2019; Wheeler et al,2017)。C3 发射波长为 320 nm,激发波长分别为 220 nm 和 270 nm,其特征与 Podgorski 等(2024)研究的天然水样的类蛋白质荧光组分一致;Li 等(2015)研究发现,该荧光与在草原湖泊中观察到的蛋白样荧光团的组成部分相匹配。一些非蛋白质样物质(如木质素酚、吲哚)也可能有助于该蛋白质样荧光团的形成(Aiken,2014),主要源自对微生物降解敏感的蛋白质类物质。C4(Ex/Em= 230(315)/395 nm)组分类似于传统定义的海洋腐殖质峰值 M,并且与沿海环境以及从沿海到海洋地区的地表水中的海洋腐殖质样组分相似(Murphy et al,2008),主要源自与生物活动密切相关的海洋类腐殖质样荧光团(Yamashita et al,2010)。C5 组分发射波长为 465 nm,激发波长分别为 260 nm 和 355 nm,与陆生腐殖质物质相似(Chen et al,2017; Painter et al,2018; Williams et al,2010),其光谱特征也与 Drozdova 等(2022)发现的丁香醛相似,而丁香醛和香兰素都是木质素氧化降解的产物,且与陆地来源输出的腐殖质 C 峰值相似(Kowalczuk et al,2013; Stedmon et al,2000),是存在于河流、湖泊、河口、沿海和海洋陆架地区的浮游植物渗出物经微生物转化后的陆生腐殖质(Romera-Castillo et al,2011)。 C1~C5 组分荧光贡献百分比在 A 组分别为 72.94%、 3.23%、13.59%、7.21%和 3.03%,在 B 组分别为 57.73%、18.08%、12.45%、7.30%和 4.44%。说明无论在有藻还是无藻环境中,均以类色氨酸基团为主,藻的光合作用产物和死亡分解产物是 DOM 的主要来源。
3CDOM 紫外–可见吸收光谱参数随辐照时间变化趋势
Fig.3Variation of CDOM UV-Vis absorption spectral parameters with irradiation time
a:吸光系数;b:光谱斜率比值。
a: a (254) ; b: SR.
4三维荧光光谱激发、发射波长特征
Fig.4Characteristics of excitation and emission wavelengths of three-dimensional fluorescence spectra
C1~C5 组在光照下均发生了不同程度的变化。如图5所示,C1 在 A、B 组中均呈现明显的增长趋势, B 组生成量明显大于 A 组。这是由于藻细胞裂解会释放大量的胞内 DOM,而类色氨酸组分占藻类胞内 DOM 的 75%~93%(张巧颖等,2021)。B 组 C1 组分 24~36 h 明显下降,其变化可能与藻类内部复杂的生理调控机制密切相关,由于光抑制或其他调节机制导致暂时下降,之后重新恢复并保持较高水平(Mueller et al,2016)。C2 组分在 A、B 组呈现降低趋势,且其占比较小,可能与其他组分的影响有关。研究发现,水溶液中的色氨酸进行光照时,新生成的未知荧光组分会增加,而原始的色氨酸荧光组分减少(Wang et al,2015)。此外,B 组 C2 出现一个瞬时高值可能是由于新生成的未知荧光组分导致色氨酸荧光信号的“突然上升”,但这并不是色氨酸本身的增加,而是新形成的激发态物质的影响(Janssen et al,2014)。C3 组分在 A 组和 B 组中初始荧光强度较低且均呈现波动趋势,光照过程中荧光强度变化不大,与其他组分相比变化趋势不明显。这可能是由于 C3 组分中存在的酪氨酸被色氨酸发射的能量影响或色氨酸荧光的量子产率较高,使这种荧光容易被色氨酸荧光淬灭(Mayer et al,1999; Yamashita et al,2008)。C4 和 C5(类腐殖质)组分在 A 组均呈现下降趋势,平均降解率分别为 26.76%和 50.96%,因为在光辐射条件下,部分腐殖质类物质可以光降解为生物可利用的底物(Mostofa et al,2013; Song et al,2022),也有研究发现,海洋类腐殖质和溶解芳香族氨基酸等荧光物质在光照下会快速光降解(Nieto-Cid et al,2006)。而 C4 和 C5 在 B 组均显示上升趋势,平均生成率达到 39.73%和 58.03%,这是由于藻类的光呼吸或死亡裂解产生的有机质经过长时间的矿化作用,会形成以木质素和腐殖质等芳香族化合物为主的物质(Borisover et al,2009; 王亚蕊等,2018; Xu et al,2013; Zhang et al,2013)。同时,有研究证实,大型植物与藻类细胞衰落会导致大量不稳定的细胞内有机碳释放,这些有机碳在光辐射下一部分进一步光转化为芳香性较低、饱和度较高和稳定的腐殖质样物质(He et al,2022; Zhang et al,2022)。此外,其增速缓慢可能是因为光合作用生成的物质覆盖藻类和微生物表面,既保护了水生生物免受紫外辐射伤害,也减少了透光率的影响(陈文昭等,2012)。因此,研究结果表明,DOM 主要来源于藻类,而微生物作用的贡献相对较少。
1组分激发和发射波长峰值及分类
Tab.1Excitation and emission wavelength peaks and classifications of components
5CDOM 荧光组分荧光强度随辐照时间的变化趋势
Fig.5Variation of fluorescence intensity of CDOM fluorescence components with irradiation time
a:0.4 μm 过滤组;b:藻液组。
a: 0.4 μm filtration group; b: Algal liquid group.
2.2 碳水化合物光化学行为研究
碳水化合物(单糖、多糖)浓度随光辐照时间变化的趋势见图6。A 组多糖浓度随辐照变化不明显,保持在 1.08~1.19 μmol C/L 之间,而单糖浓度在 12 h 时升高至 6.52 μmol C/L 之后下降,到 60 h 时的浓度为 5.14 μmol C/L,呈降低趋势,单糖浓度明显高于多糖。因为 0.4 μm 过滤之后存在一些小型微生物和颗粒物,剩余的物质在光照下不仅会发生微生物转化,还会经历显著的光化学转变,可能导致其结构变得更加简单,并释放出一些较小分子量的物质,如氨基酸、有机酸以及潜在的单糖等(Liu et al,2019)。此外,研究还发现,样品的 DOM 在辐射期间发生光化学反应,大分子物质会分解成碳水化合物,同样会使单糖浓度增加(Zhu et al,2017)。但后期单糖浓度呈现降低趋势,是由于存在的小型微生物将单糖作为快速代谢的能源,消耗或转化为其他形式的含碳化合物(Mopper et al,2002; Yan et al,2015)。
相比之下,B 组单糖浓度随辐照变化不明显,保持在 0.12~0.15 μmol C/L 之间,而多糖浓度从 0 h(14.38 μmol C/L)上升到 60 h(17.79 μmol C/L),呈增加趋势。其变化原因:一方面,藻和微生物利用单糖为生理代谢提供能源,且其代谢活动分泌的糖类物质会使多糖合成增加;另一方面,藻细胞的光合效率提高,形成更多的复杂多糖(Gao et al,2022; Li et al,2013; Mopper et al,2002; Perez-Garcia et al,2011; Yan et al,2015)。此外,单糖和微生物等聚集发生光诱导的聚合反应也会形成大量胞外多糖(Benner et al,2003)。因此,藻细胞的影响会使其多糖生成量增加。
6碳水化合物浓度随光辐照时间变化曲线
Fig.6Carbohydrate concentration with light irradiation duration
a:0.4 μm 过滤组;b:藻液组。
a: 0.4 μm filtration group; b: Algal liquid group.
2.3 TEP 光化学行为研究
图7所示,TEP 浓度整体呈现先下降后上升的趋势,60 h 时 A 组和 B 组的降解率分别为 0.42%和 0.58%,而在 24 h 时,两组光解效率达到最大(A 组 3.24%,B 组 1.83%),表现出明显的光降解现象。此外,由 A 和 B 的曲线以及 24 h 降解率发现,A 组表现出较高的光化学活性,而有藻细胞的 B 组表现出较低光化学活性。这与本研究 2.1 结果一致,且与 Ortega-Retuerta 等(2009)研究发现一致,TEP 的光化学降解是 TEP 重要的损失过程之一,生物因素会影响 TEP 的形成。而两组 TEP 在 24 h 时上升是因为在微生物和藻类代谢活动的影响下,水中残存的微生物和藻类会分泌更多的小分子 DOM 和 EPS,这些物质在微生物作用下会聚集形成 TEP(Kumari et al,2022; Passow,2002),导致 TEP 浓度在后期上升。而且光照不仅可以分解有机物,还可以促使 DOM 等聚合,形成新的 TEP 分子(Guo et al,2021; Orellana et al,2003; Shammi et al,2017)。此外,研究还发现, B 组 TEP 初始浓度(1.14×105 ±0.16×105 Xeq·μg/L)大于 A 组(6.63×104 ±0.47×103 Xeq·μg/L),因为在藻类的光合作用过程中,细胞分泌和摄食使胞内物质释放并分泌大量的 EPS(Wurl et al,2011),使 B 组 TEP 浓度较大。Berman 等(2001)Grossart 等(1998)显微镜观察发现,阿尔辛蓝染色的凝聚体部分与降解的颗粒物残体一致。因此,为了更好地了解两组的 TEP 变化,进行染色分析(图8),结果显示,在光辐照前,A 组未观察到 TEP 和藻细胞,分析发现,A 组样品经过 0.4 μm 聚碳酸酯膜过滤,但通过比色法仍检测到了显著高于空白对照的 TEP 浓度,该初始样品同时通过显微镜染色观察并未发现 TEP 存在。其存在的原因可能为,过滤后剧烈的摇匀使小分子 TEP 前体迅速聚合并被 0.4 μm 孔径截留,而染色观察过程中存在系统误差,比色法检测到的是总 TEP 含量(Guo et al,2023)。此外,在 100 mm Hg 恒定低压下过滤,可能存在略小于 0.4 μm 的 TEP 产生类似滤饼过滤的现象(Yuan et al,2022),所以,即使过滤后仍有较大颗粒存在,也会被检测到较高的 TEP 浓度。因此,在 0 h 时 A 组观察不到 TEP 粒子。B 组观察到大颗粒的 TEP 粒子,直径约为 45 μm,大小不一,藻细胞(除成团的藻细胞外)的表面几乎很难观察到 TEP 的存在。之后,两组 TEP 浓度在 24 h 后又呈现增加趋势,由 36 h 镜检观察到 A 组出现了片状 TEP 染色物质,直径约为 20 μm,B 组藻细胞无游动性,只有少量透明状的聚合物,这表明在 24 h 后两组出现光生成现象,但 B 组生成量较低。A 组可能是由于在光照下新释放的 TEP 前体(DOM 等)以非生物方式在极短时间内发生光聚合,形成更大的胶体,最终形成 TEP(Guo et al,2021; Mopper et al,1995; Orellana et al,2003; Shammi et al,2017)。而 B 组是由于藻细胞和微生物之间的代谢活动释放新的 TEP 前体(Berman-Frank et al,2007; Ramaiah et al,2001)。此外,藻细胞衰亡的残体会发生生物降解和光降解形成 DOM,这些物质在微生物吸附作用下会发生聚集,形成 TEP 前体(Kumari et al,2022; Passow,2002)。因此,A 组在 36 h 后出现的片状 TEP,表明在光照条件下发生了光聚合反应,使 DOM 等可溶性 TEP 前体自发凝聚形成 TEP。相比之下,B 组 TEP 的增加则是由于藻类和微生物新产生的 TEP 所致。
7TEP 浓度随辐照时间的变化趋势
Fig.7Variation of TEP concentration with irradiation time
8TEP 在光学显微镜下形态
Fig.8The morphology of TEP under optical microscope
a:0.4 μm 过滤组;b:藻液组。图中被红圈圈定的淡蓝色无定形物质为 TEP。
a: 0.4 μm filtration group; b: Algal liquid group; The light blue amorphous material circled in red in the figure is TEP.
3 讨论
不同环境中 CDOM、碳水化合物(多糖和单糖)以及 TEP 的变化特征因其转化、降解、环境条件等而存在差异。图9为 CDOM、碳水化合物(多糖和单糖)与 TEP 之间的拟合分析结果。图9a、9d表明,两组中 CDOM 与 TEP 浓度之间为显著相关,A 组无藻环境中为正相关(R2 =0.698,P<0.05),B 组微藻环境表现为较弱的负相关(R2 =0.612,P=0.07);图9b、9c显示,A 组无藻环境中,碳水化合物(单糖和多糖)与 TEP 之间均无显著相关性;图9e、9f显示,在 B 组微藻环境下,多糖(R2 =0.822,P<0.05)和单糖(R2 =0.821, P<0.05)与 TEP 浓度之间呈现显著负相关。表明微藻显著影响了 CDOM、碳水化合物(多糖和单糖)与 TEP 之间的光化学转化过程。与之前研究发现相似,藻际环境不仅是 DOM 和碳水化合物(多糖和单糖)的重要来源,同时也是这些物质之间相互转化的关键场所。光降解作用或光合作用产生的 DOM 能被微生物降解为 DOC,并通过扩散和矿化过程进一步转化为 EPS(吴科比等,2021),这些多糖继续降解为单糖在食物网中被循环利用,为浮游生物提供了能量来源。但也有研究发现,部分多糖难以被分解,会向下传输成为沉积物碳库的重要组成部分,并在水体中引发光聚合反应,重新凝聚为 TEP,从而作为沉积物碳库的重要组成(Arnosti et al,2021)。
微藻是海洋中的重要初级生产力,自养藻类通过光合作用固定水体中的无机碳,除了供给自身生长利用,同时分泌到水体中,为海洋碳循环提供载体。此外,微藻能吸收动物幼体排出的 CO2和 N、P 元素,并通过光合作用转化为 O2,达到水体中“CO2-HCO3”平衡、 pH 平衡的效果(刘瑞卿等,2021),从而影响物质循环和能量流动。在光照下,藻细胞数量的急剧增加,或藻细胞衰老裂解都释放出大量 EPS,同时伴随着孢囊的形成,这些多糖会沉降至海底,对有机碳的纵向传输具有重要贡献,有利于碳的封存和碳汇的形成(韦光领等,2020)。但由于藻际环境的组分复杂,其各组分的光化学过程均有所不同,产物也不尽相同。因此,藻际环境下的 DOM 和 TEP 的复杂光化学变化对海水中物质循环和海底的碳封存有重要作用。
9CDOM 和碳水化合物(多糖和单糖)与 TEP 之间的关系
Fig9 Relationship between CDOM and carbohydrates (polysaccharides and monosaccharides) and TEP
a、b、c:A 组 0.4 μm 过滤组;d、e、f:B 组藻液组。
a, b, c: 0.4 μm filtration group; d, e, f: Algal liquid group.
4 结论
通过对杜氏盐藻中 DOM 和 TEP 的光化学行为研究表明,DOM 和 TEP 的生成与降解是一个复杂的动态平衡过程,受到光照、微生物活动和有机物转化等多种因素的共同影响。有藻和无藻环境对 DOM 和 TEP 的作用各异,光化学变化也存在显著差异。对 CDOM 和碳水化合物的光化学反应研究发现,无藻环境下表现出明显的光降解现象,光照促使 CDOM 发生光降解,导致大分子化合物裂解形成小分子量化合物或分解为无机物,生成单糖量较大;而在有藻细胞组中则表现出光生成现象,光化学过程促进了 DOM 的生成,且多糖的生成量大于单糖;EEMsPARAFAC 组分模型识别出 5 种荧光组分:3 种类蛋白质组分(C1、C2 和 C3)和 2 种腐殖质样组分(C4 和 C5),无论在有藻还是无藻环境中,均以类色氨酸基团为主,DOM 多来源于藻光合作用和死亡分解的产物。同时,研究发现,光降解是 TEP 损失的重要过程之一。DOM 等可溶性物质(TEP 前体)会自发凝聚形成 TEP,藻类以及微生物的光化学反应会释放新的 TEP,但其生物释放量以及光聚合量小于光降解量; 此外,相关性研究发现,无藻环境中碳水化合物(多糖和单糖)与 TEP 之间均无显著相关性,在微藻环境下多糖(R2 =0.822,P<0.05)和单糖(R2 =0.821,P<0.05)与 TEP 浓度之间呈显著负相关;而两组中,CDOM 与 TEP 浓度之间表现为显著相关关系,其中在无藻环境中表现为正相关(R2 =0.698,P<0.05),有藻环境表现为较弱的负相关(R2 =0.612,P=0.07),表明微藻显著影响了 CDOM 和碳水化合物(多糖和单糖)与 TEP 之间的光化学转化过程。在光降解过程中,DOM 和 TEP 在藻际环境的转化过程中发挥着重要作用,是海洋生态系统碳循环的关键过程。本研究为理解海洋中光化学过程在物质循环包括碳循环和营养盐循环中的作用提供了宝贵的数据,对于揭示海洋生物地球化学循环的复杂机制具有重大的科学意义。然而,本研究仅限于实验室模拟的 TEP 和 DOM 转化,未来还需引入不同来源的 DOM 或开展实地研究,以进一步评估藻源光化学对 TEP 和 DOM 循环的影响。
1杜氏盐藻生长曲线
Fig.1Growth curve of D. salina
2不同处理样品
Fig.2Samples with different treatments
3CDOM 紫外–可见吸收光谱参数随辐照时间变化趋势
Fig.3Variation of CDOM UV-Vis absorption spectral parameters with irradiation time
4三维荧光光谱激发、发射波长特征
Fig.4Characteristics of excitation and emission wavelengths of three-dimensional fluorescence spectra
5CDOM 荧光组分荧光强度随辐照时间的变化趋势
Fig.5Variation of fluorescence intensity of CDOM fluorescence components with irradiation time
6碳水化合物浓度随光辐照时间变化曲线
Fig.6Carbohydrate concentration with light irradiation duration
7TEP 浓度随辐照时间的变化趋势
Fig.7Variation of TEP concentration with irradiation time
8TEP 在光学显微镜下形态
Fig.8The morphology of TEP under optical microscope
9CDOM 和碳水化合物(多糖和单糖)与 TEP 之间的关系
1组分激发和发射波长峰值及分类
Tab.1Excitation and emission wavelength peaks and classifications of components
AIKEN G. Fluorescence and dissolved organic matter: A Chemistʼs perspective. In: COBLE P G, LEAD J, BAKER A, et al (Eds). Aquatic organic matter fluorescence. Cambridge Environmental Chemistry Series. Cambridge University Press, 2014, 35-74
ALLDREDGE A L, PASSOW U, LOGAN B E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1131-1140
ARNOSTI C, WIETZ M, BRINKHOFF T, et al. The biogeochemistry of marine polysaccharides: Sources, inventories, and bacterial drivers of the carbohydrate cycle. Annual Review of Marine Science, 2021, 13: 81-108
AZAM F, FENCHEL T, FIELD J G, et al. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 1983, 10: 257-263
BAI Y, SU R G, SHI X Y. Assessing the dynamics of chromophoric dissolved organic matter in the southern Yellow Sea by excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Continental Shelf Research, 2014, 88: 103-116
BENNER R, KAISER K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnology and Oceanography, 2003, 48(1): 118-128
BERMAN T, MIZRAHI R, DOSORETZ C G. Transparent exopolymer particles (TEP): A critical factor in aquatic biofilm initiation and fouling on filtration membranes. Desalination, 2011, 276(1/2/3): 184-190
BERMAN T, VINER-MOZZINI Y. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret. Aquatic Microbial Ecology, 2001, 24: 255-264
BERMAN-FRANK I, ROSENBERG G, LEVITAN O, et al. Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine Cyanobacterium trichodesmium. Environmental Microbiology, 2007, 9(6): 1415-1422
BITTAR T B, VIEIRA A A H, STUBBINS A, et al. Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. Limnology and Oceanography, 2015, 60(4): 1172-1194
BORISOVER M, LAOR Y, PARPAROV A, et al. Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin. Water Research, 2009, 43(12): 3104-3116
BRYM A, PAERL H W, MONTGOMERY M T, et al. Optical and chemical characterization of base-extracted particulate organic matter in coastal marine environments. Marine Chemistry, 2014, 162: 96-113
CHEN H, ZHENG B H, SONG Y H, et al. Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM. Aquatic Sciences, 2011, 73(1): 103-112
CHEN M L, KIM S H, JUNG H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications. Water Research, 2017, 121: 150-161
CHEN P, PAN D L, MAO Z H. Fluorescence measured using a field-portable laser fluorometer as a proxy for CDOM absorption. Estuarine, Coastal and Shelf Science, 2014, 146: 33-41
CHEN W Z, YI Y Y, YU X X, et al. Photochemical degradation of autochthonous dissolved organic matter from the culture media of Chlorella spp. Acta Scientiae Circumstantiae, 2012, 32(5): 1095-1103[陈文昭, 易月圆, 余翔翔, 等. 小球藻来源溶解有机质的光化学降解特性. 环境科学学报, 2012, 32(5): 1095-1103]
CHENG Z J, LU Z B, SHAO Z W, et al. Photodegradation of propaquizafop in water under UV irradiation: The identification of transformation products and elucidation of photodegradation pathway. Agronomy, 2024, 14(12): 2959
D’ANDRILLI J, MCCONNELL J R. Polar ice core organic matter signatures reveal past atmospheric carbon composition and spatial trends across ancient and modern timescales. Journal of Glaciology, 2021, 67(266): 1028-1042
DEL VECCHIO R, BLOUGH N V. Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling. Marine Chemistry, 2002, 78(4): 231-253
DITTMAR T, LENNARTZ S T, BUCK-WIESE H, et al. Enigmatic persistence of dissolved organic matter in the ocean. Nature Reviews Earth & Environment, 2021, 2(8): 570-583
DROZDOVA A N, KRYLOV I N, NEDOSPASOV A A, et al. Fluorescent signatures of autochthonous dissolved organic matter production in Siberian shelf seas. Frontiers in Marine Science, 2022, 9: 872557
ENGEL A, THOMS S, RIEBESELL U, et al. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature, 2004, 428(6986): 929-932
GAO P T, GUO L, GAO M C, et al. Regulation of carbon source metabolism in mixotrophic microalgae cultivation in response to light intensity variation. Journal of Environmental Management, 2022, 302: 114095
GRAEBER D, TENZIN Y, STUTTER M, et al. Bioavailable DOC: Reactive nutrient ratios control heterotrophic nutrient assimilation—An experimental proof of the macronutrient-access hypothesis. Biogeochemistry, 2021, 155(1): 1-20
GREEN S A, BLOUGH N V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography, 1994, 39(8): 1903-1916
GROSSART H P, BERMAN T, SIMON M, et al. Occurrence and microbial dynamics of macroscopic organic aggregates (lake snow) in Lake Kinneret, Israel, in fall. Aquatic Microbial Ecology, 1998, 14: 59-67
GUIDI L, LO PICCOLO E, LANDI M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Frontiers in Plant Science, 2019, 10: 174
GUO C C, SUN J, WANG X Z, et al. Distribution and settling regime of transparent exopolymer particles (TEP) potentially associated with bio-physical processes in the eastern Indian Ocean. Journal of Geophysical Research: Biogeosciences, 2021, 126(4): e2020JG005934
GUO C C, ZHANG G C, JIAN S, et al. The impacts of ambiguity in preparation of 80% sulfuric acid solution and shaking time control of calibration solution on the determination of transparent exopolymer particles. Acta Oceanologica Sinica, 2023, 42(4): 50-58
GUO K L, CHEN J, WANG X D, et al. Production of transparent exopolymer particles from two marine diatoms and its ecological significance. Marine Environmental Science, 2019, 38(5): 649-655[郭康丽, 陈洁, 王小冬, 等. 两种海洋硅藻透明胞外聚合颗粒物的产生及其生态学意义. 海洋环境科学, 2019, 38(5): 649-655]
GUO W D, YANG L Y, HONG H S, et al. Assessing the dynamics of chromophoric dissolved organic matter in a subtropical estuary using parallel factor analysis. Marine Chemistry, 2011, 124(1/2/3/4): 125-133
HE J, WU X, ZHI G Q, et al. Fluorescence characteristics of DOM and its influence on water quality of rivers and lakes in the Dianchi Lake basin. Ecological Indicators, 2022, 142: 109088
HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 2008, 53(3): 955-969
HERNES P J, BENNER R. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. Journal of Geophysical Research: Oceans, 2003, 108(C9): 3291
HULATT C J, THOMAS D N, BOWERS D G, et al. Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuarine, Coastal and Shelf Science, 2009, 84(1): 147-153
JANSSEN E M, ERICKSON P R, MCNEILL K. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan. Environmental Science & Technology, 2014, 48(9): 4916-4924
KANG Q Z, LIU Y, WU W G, et al. Microscale variations in the distribution and consumption of oxygen at the sediment-water interface in Sanggou Bay in summer. Progress in Fishery Sciences, 2024, 45(5): 96-108[康秦梓, 刘毅, 吴文广, 等. 夏季桑沟湾沉积物-水界面溶解氧分布和消耗的微观变化研究. 渔业科学进展, 2024, 45(5): 96-108]
KIEBER D J, MCDANIEL J, MOPPER K. Photochemical source of biological substrates in sea water: Implications for carbon cycling. Nature, 1989, 341(6243): 637-639
KOWALCZUK P, TILSTONE G H, ZABŁOCKA M, et al. Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and parallel factor analysis. Marine Chemistry, 2013, 157: 170-184
KUMARI S, SATAPATHY S, DATTA M, et al, Adaptation of microalgae to temperature and light stress. In: ROY S, MATHUR P, CHAKRABORTY A P, et al (Eds). Plant stress: Challenges and management in the new decade. Advances in Science, Technology and Innovation. Springer, Cham, 2022, 123-134. https://doi.org/10.1007/ 978-3-030-95365-2_8
LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River, Belgium). Biogeochemistry, 2017, 136(2): 191-211
LAZZARI P, ÁLVAREZ E, TERZIĆ E, et al. CDOM spatiotemporal variability in the Mediterranean Sea: A modelling study. Journal of Marine Science and Engineering, 2021, 9(2): 176
LI M, ZHU W, GAO L, et al. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. Journal of Applied Phycology, 2013, 25(4): 1023-1030
LI P H, CHEN L, ZHANG W, et al. Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze Estuary and its adjacent sea using fluorescence and parallel factor analysis. PLoS One, 2015, 10(6): e0130852
LI W, CAI F, DING C, et al. Review on ecotoxicological effects of antibiotics and their removal by microalgae. Asian Journal of Ecotoxicology, 2022, 17(5): 226-238[李威, 蔡峰, 丁淳, 等. 微藻对抗生素的生态毒性响应和消除作用的研究进展. 生态毒理学报, 2022, 17(5): 226-238]
LI Z C, DUAN H T, SHEN Q S, et al. The changes of water color induced by chromophoric dissolved organic matter (CDOM) during the formation of black blooms. Journal of Lake Sciences, 2015, 27(4): 616-622[李佐琛, 段洪涛, 申秋实, 等. 藻源性湖泛发生过程CDOM变化对水色的影响. 湖泊科学, 2015, 27(4): 616-622]
LIU J F, HU X J, CAO Y C, et al. Community characteristics of planktonic microalgae in aquaculture ponds of different modes in Ningxia in summer. Progress in Fishery Sciences, 2023, 44(2): 161-173[刘锦帆, 胡晓娟, 曹煜成, 等. 宁夏地区不同模式养殖池塘夏季浮游微藻群落特征. 渔业科学进展, 2023, 44(2): 161-173]
LIU J, ZHOU R Y, ZHANG X. Binding of calcium and magnesium ions to terrestrial chromophoric dissolved organic matter (CDOM): A combination of steady-state and time-resolved fluorescence study. Water, 2021, 13(16): 2182
LIU K, YANG L, YANG G P, et al. Distribution and photodegradation behavior of CDOM along 130°E in the western Pacific Ocean. Haiyang Xuebao, 2020, 42(10): 121-131[刘可, 杨琳, 杨桂朋, 等. 西太平洋秋季130°E断面有色溶解有机物的分布特征及光降解行为研究. 海洋学报, 2020, 42(10): 121-131]
LIU L Z, QIN B Q, HUANG Q. Advances in transparent exopolymer particles (TEP) in freshwaters. Advances in Earth Science, 2014, 29(10): 1149-1157[刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展. 地球科学进展, 2014, 29(10): 1149-1157]
LIU R Q, HE M L, WANG C H. Progress in research on application of microalgae bait in echinoderm culture. Progress in Fishery Sciences, 2021, 42(3): 17-25[刘瑞卿, 何梅琳, 王长海. 微藻饵料在经济棘皮动物养殖中的应用及研究进展. 渔业科学进展, 2021, 42(3): 17-25]
LIU S S, FENG W Y, SONG F H, et al. Photodegradation of algae and macrophyte-derived dissolved organic matter: A multi-method assessment of DOM transformation. Limnologica, 2019, 77: 125683
LIU Y Y, QIN J H, SUN H. UV-VIS spectral characteristics of dissolved organic matter (DOM) of the natural alpine rivers in the western Sichuan Province. Acta Scientiae Circumstantiae, 2018, 38(9): 3662-3671[刘堰杨, 秦纪洪, 孙辉. 川西高海拔河流中溶解性有机质(DOM)紫外-可见光吸收光谱特征. 环境科学学报, 2018, 38(9): 3662-3671]
LØNBORG C, CARREIRA C, JICKELLS T, et al. Impacts of global change on ocean dissolved organic carbon (DOC) cycling. Frontiers in Marine Science, 2020, 7: 466
LUO Y Q, WAN Z W, YAN C X, et al. Spectral characteristics of dissolved organic matter in sediments from Poyang Lake. Environmental Science, 2022, 43(2): 847-858[罗燕清, 万智巍, 晏彩霞, 等. 鄱阳湖沉积物溶解性有机质光谱特征. 环境科学, 2022, 43(2): 847-858]
MARI X, PASSOW U, MIGON C, et al. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Progress in Oceanography, 2017, 151: 13-37
MAYER L M, SCHICK L L, LODER T C. Dissolved protein fluorescence in two Maine estuaries. Marine Chemistry, 1999, 64(3): 171-179
MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 2001, 46(1): 38-48
MOPPER K, KIEBER D J. Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus. In: HANSELL D A, CARLSON C A. Biogeochemistry of marine dissolved organic matter. Academic Press, 2002, 455-507
MOPPER K, ZHOU J, SRI RAMANA K, et al. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(1): 47-73
MOPPER K, ZHOU X L, KIEBER R J, et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, 1991, 353(6339): 60-62
MOSTOFA K M G, LIU C Q, MINAKATA D, et al, Photoinduced and microbial degradation of dissolved organic matter in natural waters. In: MOSTOFA K M G, YOSHIOKA T, MOTTALEB A, et al (Eds). Photobiogeochemistry of organic matter. Environmental Science and Engineering. Springer, Berlin, Heidelberg. 2013, 273-364. https://doi.org/10.1007/978-3-642-32223-5_4
MUELLER B, DEN HAAN J, VISSER P M, et al. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Scientific Reports, 2016, 6: 23248
MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 2008, 108(1/2): 40-58
NEILEN A D, HAWKER D W, O’BRIEN K R, et al. Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition. Chemosphere, 2017, 184: 969-980
NIETO-CID M, ÁLVAREZ-SALGADO X A, PÉREZ F F. Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnology and Oceanography, 2006, 51(3): 1391-1400
OBERNOSTERER I, REITNER B, HERNDL G J. Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton. Limnology and Oceanography, 1999, 44(7): 1645-1654
ORELLANA M V, VERDUGO P. Ultraviolet radiation blocks the organic carbon exchange between the dissolved phase and the gel phase in the ocean. Limnology and Oceanography, 2003, 48(4): 1618-1623
ORTEGA-RETUERTA E, PASSOW U, DUARTE C M, et al. Effects of ultraviolet B radiation on (not so) transparent exopolymer particles. Biogeosciences, 2009, 6(12): 3071-3080
PAINTER S C, LAPWORTH D J, WOODWARD E M S, et al. Terrestrial dissolved organic matter distribution in the North Sea. Science of the Total Environment, 2018, 630: 630-647
PASSOW U, ALLDREDGE A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography, 1995, 40(7): 1326-1335
PASSOW U. Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 2002, 55(3/4): 287-333
PEREZ-GARCIA O, ESCALANTE F M E, DE-BASHAN L E, et al. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 2011, 45(1): 11-36
PODGORSKI D C, WALLEY J, SHIELDS M P, et al. Dispersant-enhanced photodissolution of macondo crude oil: A molecular perspective. Journal of Hazardous Materials, 2024, 461: 132558
QIN R Y, LI Y F, LIU J G. Effects of salinity, light, and temperature and their interactions on Dunaliella salina growth. Marine Sciences, 2021, 45(11): 73-81[秦瑞阳, 李永富, 刘建国. 盐度、光强和温度对盐生杜氏藻生长的影响及其交互作用. 海洋科学, 2021, 45(11): 73-81]
RAMAIAH N, YOSHIKAWA T, FURUYA K. Temporal variations in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic ria in Japan. Marine Ecology Progress Series, 2001, 212: 79-88
RETELLETTI BROGI S, DERRIEN M, HUR J. In-depth assessment of the effect of sodium azide on the optical properties of dissolved organic matter. Journal of Fluorescence, 2019, 29(4): 877-885
ROMERA-CASTILLO C, SARMENTO H, ALVAREZ-SALGADO X A, et al. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Applied and Environmental Microbiology, 2011, 77(21): 7490-7498
SHAMMI M, PAN X L, MOSTOFA K M G, et al. Photo-flocculation of microbial mat extracellular polymeric substances and their transformation into transparent exopolymer particles: Chemical and spectroscopic evidences. Scientific Reports, 2017, 7(1): 9074
SONG G S, RICHARDSON J D, WERNER J P, et al. Carbon monoxide photoproduction from particles and solutes in the Delaware Estuary under contrasting hydrological conditions. Environmental Science & Technology, 2015, 49(24): 14048-14056
SONG X Y, ZHAO M Y, CHEN A Q, et al. Effects of input of terrestrial materials on photodegradation and biodegradation of DOM in rivers: The case of Heilongjiang River. Journal of Hydrology, 2022, 609: 127792
STEDMON C A, MARKAGER S, KAAS H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science, 2000, 51(2): 267-278
SUN J. Transparent exopolymer particles (TEP) and aggregation web in marine environments. Acta Ecologica Sinica, 2005, 25(5): 1191-1198[孙军. 海洋中的凝集网与透明胞外聚合颗粒物. 生态学报, 2005, 25(5): 1191-1198]
THORNTON D. Diatom aggregation in the sea: Mechanisms and ecological implications. European Journal of Phycology, 2002, 37(2): 149-161
TURNER J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progress in Oceanography, 2015, 130: 205-248
VÄHÄTALO A V, SALONEN K, SALKINOJA-SALONEN M, et al. Photochemical mineralization of synthetic lignin in lake water indicates enhanced turnover of aromatic organic matter under solar radiation. Biodegradation, 1999, 10(6): 415-420
VÄHÄTALO A V, WETZEL R G. Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures. Marine Chemistry, 2004, 89(1/2/3/4): 313-326
WANG C, GUO W D, LI Y, et al. Hydrological and biogeochemical controls on absorption and fluorescence of dissolved organic matter in the northern South China Sea. Journal of Geophysical Research: Biogeosciences, 2017, 122(12): 3405-3418
WANG X C, CHEN H, LEI K, et al. UVA illumination-induced optical coupling between tryptophan and natural dissolved organic matter. Environmental Science and Pollution Research, 2015, 22(21): 16969-16977
WANG Y R, CHEN X C, CHEN B F, et al. The release of pollutants in sediment-water interface after algal-debris accumulated in sediments. Acta Scientiae Circumstantiae, 2018, 38(1): 142-153[王亚蕊, 陈向超, 陈丙法, 等. 藻屑堆积对沉积物-水界面污染物的释放效应. 环境科学学报, 2018, 38(1): 142-153]
WEI G L, ZHANG S C, CAI Z H, et al. Research progress and ecological roles of phytoplankton cysts. Chinese Journal of Applied Ecology, 2020, 31(2): 685-694[韦光领, 张士春, 蔡中华, 等. 浮游植物孢囊的研究进展与生态意义. 应用生态学报, 2020, 31(2): 685-694]
WEI Z Z, LI N, ZHANG X Y, et al. Characterizing photochemical production carboxyl content of dissolved organic matters using absorbance spectroscopy combined with FT-ICR MS. Chemosphere, 2023, 344: 140352
WEN Y S, DENG J M, MAO Z H, et al. Effect of the Fresnel reflection of a water surface on chlorophyll fluorescence line height at approximately 761 nm. National Remote Sensing Bulletin, 2018, 22(3): 424-431
WHEELER K I, LEVIA D F, HUDSON J E. Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (PARAFAC) modeling and self-organizing maps. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2233-2250
WILLIAMS C J, YAMASHITA Y, WILSON H F, et al. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnology and Oceanography, 2010, 55(3): 1159-1171
WU K B, ZHOU J, CAI Z H. Review of algal phycosphere: Structure and ecological function. Chinese Bulletin of Life Sciences, 2021, 33(5): 535-545[吴科比, 周进, 蔡中华. 藻际环境微生态结构与功能的研究进展. 生命科学, 2021, 33(5): 535-545]
WURL O, EKAU W, LANDING W M, et al. Sea surface microlayer in a changing ocean-A perspective. Elementa: Science of the Anthropocene, 2017, 5: 31
WURL O, MILLER L, VAGLE S. Production and fate of transparent exopolymer particles in the ocean. Journal of Geophysical Research: Oceans, 2011, 116(C7): C00H13
XIE H X, ZAFIRIOU O C, CAI W J, et al. Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environmental Science & Technology, 2004, 38(15): 4113-4119
XU H C, CAI H Y, YU G H, et al. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Research, 2013, 47(6): 2005-2014
WANG X C, CHEN H, LEI K, et al. UVA illumination-induced optical coupling between tryptophan and natural dissolved organic matter. Environmental Science and Pollution Research, 2015, 22(21): 16969-16977
YAMASHITA Y, CORY R M, NISHIOKA J, et al. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(16): 1478-1485
YAMASHITA Y, JAFFÉ R, MAIE N, et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnology and Oceanography, 2008, 53(5): 1900-1908
YAN J H, LI K, WANG W T, et al. Changes in dissolved organic carbon and total dissolved nitrogen fluxes across subtropical forest ecosystems at different successional stages. Water Resources Research, 2015, 51(5): 3681-3694
YE J. Construction and electroporation of GFP expression vector of Dunaliella salina. Master’s Thesis of Anhui Agricultural University, 2006[叶霁. 杜氏盐藻GFP表达载体的构建及电转化. 安徽农业大学硕士研究生学位论文, 2006]
YUAN Z F, MEI L, XIE S S, et al. Preparation of polyethylene porous tube membrane and fouling mechanism during the filtration process. Desalination and Water Treatment, 2022, 273: 81-91
ZENG L. Construction of double selective transformation vector pchlN-CAT-BAR and transformation for chloroplast of Dunaliella salina. Master’s Thesis of Zhengzhou University, 2010[曾磊. 杜氏盐藻叶绿体双筛选载体pchlN-CAT-BAR的构建及转化. 郑州大学硕士研究生学位论文, 2010]
ZHANG Q Y, SUN W, DU Y X, et al. Biodegradation of algae-derived organic matter (I-DOM) from Lake Taihu. Environmental Science, 2021, 42(4): 1870-1878[张巧颖, 孙伟, 杜瑛珣, 等. 太湖蓝藻胞内有机质的微生物降解. 环境科学, 2021, 42(4): 1870-1878]
ZHANG T, MA H, HONG Z C, et al. Photo-reactivity and photo-transformation of algal dissolved organic matter unraveled by optical spectroscopy and high-resolution mass spectrometry analysis. Environmental Science & Technology, 2022, 56(18): 13439-13448
ZHANG X Y, XIAO F, YAN M Q, et al. Photochemical-biodegradation mechanism of intracellular dissolved organic matter from river algae. Chinese Journal of Environmental Engineering, 2023, 17(5): 1496-1503[张心怡, 肖峰, 晏明全, 等. 河道藻源胞内有机质光化学-生物降解机制. 环境工程学报, 2023, 17(5): 1496-1503]
ZHANG Y L, LIU X H, OSBURN C L, et al. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra. PLoS One, 2013, 8(10): e77515
ZHANG Y P, YANG G P. A spectrophotometric method for determination of dissolved monosaccharides and polysaccharides in seawater. Periodical of Ocean University of China, 2009, 39(2): 327-332[张艳萍, 杨桂朋. 分光光度法测定海水中溶解单糖和多糖. 中国海洋大学学报(自然科学版), 2009, 39(2): 327-332]
ZHU W Z, WANG S H, WANG D Z, et al. Contrasting effects of different light regimes on the photoreactivities of allochthonous and autochthonous chromophoric dissolved organic matter. Chemosphere, 2023, 332: 138823
ZHU W Z, YANG G P, ZHANG H H. Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters. Science of the Total Environment, 2017, 607: 214-224
ZHU W Z, ZHANG J, YANG G P. Mixing behavior and photobleaching of chromophoric dissolved organic matter in the Changjiang River estuary and the adjacent East China Sea. Estuarine, Coastal and Shelf Science, 2018, 207: 422-434