摘要
为进一步研究自然生物被膜中硅藻与海洋无脊椎动物的互作关系,探究枸杞岛海域不同被膜日龄的自然生物被膜中硅藻群落与厚壳贻贝(Mytilus coruscus)附着的关系。本研究在枸杞岛海域 (122°46′ E; 30°43′ N)挂板制备 7、14、21 和 28 d 被膜日龄的自然生物被膜,分析其干重、细菌密度、硅藻密度、叶绿素 a 含量以及硅藻群落多样性等生物学特征对厚壳贻贝稚贝附着的影响。结果表明,生物被膜诱导厚壳贻贝稚贝附着的能力与被膜日龄、硅藻密度、叶绿素 a 浓度、干重和细菌密度均成正相关(P<0.05)。21 d、28 d 高被膜日龄生物被膜的平均诱导能力达到 92%,且硅藻密度在 21 d 达到最大值。通过 18S rRNA 测序分析发现,高被膜日龄生物被膜中曲壳藻属(Achnanthes)等对无脊椎动物附着具有诱导活性的硅藻相对丰度较高;菱形藻属(Nitzschia)等非诱导活性硅藻在低被膜日龄生物被膜中的相对丰度较高。由此可见,生物被膜中诱导活性和非诱导活性硅藻的种类及其相对丰度与生物被膜的诱导能力相关。本研究结果为研究生物被膜硅藻群落多样性与无脊椎动物附着之间的关系提供了理论依据,对硅藻及其生物被膜在厚壳贻贝等贝类高效养殖中的潜在应用具有重要理论意义。
Abstract
Mytilus coruscus, an economically important cultured shellfish in China, undergoes settlement and metamorphosis during its transition from planktonic to benthic life. The settlement of marine invertebrates is regulated by microbial biofilms. Bacteria and diatoms, along with their secreted extracellular polymeric substances, adhere to the substrate's surface. Diatoms can form biofilms independently of bacteria and are preferred by settling marine invertebrates. Previous studies extensively investigated, the mechanisms by which bacteria regulate the settlement of invertebrates. However, the relationship between diatom settlement and marine invertebrates, such as mussels, has yet to be reported. Gouqi Island, in Zhoushan, Zhejiang Province features open near-shore waters, and its surrounding area constitutes an important marine region for the raft culture of M. coruscus. This study aimed to investigate the interactions between diatoms and marine invertebrates and evaluate the potential of diatom biofilms as settlement inducers for juvenile mussels in M. coruscus. Specifically, the relationship between the diatom community in biofilms with varying ages formed at Gouqi Island and the settlement of M. coruscus was examined. Natural biofilms were established for 7, 14, 21, and 28 days in the marine area surrounding Gouqi Island (122°46'E; 30°43'N). Ten juveniles were placed in sterilized glass dishes (64 mm × 19 mm) with 20 mL of autoclaved filtered seawater and natural biofilms to test the inducing effect of biofilms on M. coruscus settlement. The biological characteristics, including dry weight, bacterial density, diatom density, and chlorophyll a content, of biofilms were analyzed. The population composition was identified by 18S rRNA amplicon sequencing (573F CGCGGTAATTCCAGCTCCA, 951R TTGGYRAATGCTTTCGC) and scanning electron microscopy. On average, 90% of juvenile mussels settled on 21- and 28-day biofilms. Results indicated a positive correlation between and factors such as biofilm age, diatom density, chlorophyll a concentration, dry weight, and bacterial density. The correlation between diatom density and juvenile mussel settlement was the strongest, with a coefficient of R = 0.96. Furthermore, the correlation between diatoms and juvenile mussel settlement was significantly higher than that observed for bacterial density, which had a correlation coefficient of R = 0.88. The dry weight of biofilms significantly increased with age, reaching 5.91 mg at 28 days. Bacterial density also increased over time, peaking at 2.68×106 cell/cm2 . The concentration of chlorophyll a exhibited a trend similar to that of diatom density, reaching its peak at 21 days. Although a decreasing tendency was observed at 28 days, the difference in concentration compared with that at 21 days was not statistically significant. The results of 18S rRNA sequencing showed significant differences (P < 0.05) in eukaryotic microorganism diversity among different biofilm groups. The 18S rRNA sequencing analysis indicated that diatom phyla were predominant in biofilms of varying ages, exhibiting an average relative abundance of 0.96. The identified species within the diatom phyla encompassed 10 phyla, 4 orders, 17 families, 23 genera, and 32 species. The top 5 genera in terms of abundance in the sample were Licmophora, Odontella, Halamphora, Navicula, and Pauliella. The settlement of juvenile mussels positively correlated with the abundance of diatoms. Among the top 16 genera, the abundance of Thalassiosira, Licmophora, Minutocellus, and Achnanthes exhibited higher positive correlations with the settlement of juvenile mussels. Except for Licmophora, the abundance of Thalassiosira, Minutocellus, and Achnanthes showed higher relative abundance in the high biofilm day-age group than in the low biofilm day-age group. The relative abundances of Seminavis and Nitzschia negatively correlated with the settlement of juvenile mussels, and they were greater in the low biofilm day-age group than in the high biofilm day-age group. The relative abundance of diatoms with inducing activity for invertebrate settlement, such as Achnanthes, was higher in the high-age biofilms than in the low-age biofilms, whereas non-inducing diatoms such as Nitzschia had higher relative abundance in the low-age biofilms than in the high-age biofilms. The types and relative abundance of diatoms with and without inducing activity in biofilms were correlated with the induction capacity of these biofilms. This study indicated that diatoms may exhibit a higher inducing activity for invertebrates’ settlement, and the inducing activity may be related to their ecological habits, living environment, and physiological characteristics. The findings of this study provide a theoretical basis for examining the relationship between biofilm diatom community diversity and invertebrate settlement. This research offers a new perspective on addressing the challenge of seedling settlement during mussel aquaculture. Additionally, it has significant implications for applying diatoms and their biofilms to enhance shellfish aquaculture efficiency, particularly for M. coruscus. The insights from this study are crucial for understanding how to effectively utilize diatoms and their biofilms in cultivating M. coruscus.
Keywords
厚壳贻贝(Mytilus coruscus)是我国重要的经济养殖贝类,广泛分布于黄海、渤海和东海沿岸(杨金龙等,2013)。近年来,自然海域中幼贝的附着数量锐减,成贝质量也大幅下滑,进而对整个厚壳贻贝养殖业构成了不容忽视的威胁。厚壳贻贝在其生活史中需要经历由浮游生活过渡到底栖生活的附着变态过程,变态率的高低直接影响着苗种的质量;当变态后的稚贝处于不利于生存的环境时,会自行切断足丝,寻找适宜环境进行二次附着(周轩等,2015)。在养殖过程中,经室内育苗获得的完全变态的稚贝需通过包苗过程移至海区进行浮筏式人工养殖。因此,提高贻贝的二次附着能力对贝类养殖具有重要意义。
生物被膜已被证实能够调控海洋无脊椎动物的附着(Yang et al,2016a; 李浩然等,2024),该结构是由细菌、硅藻等微生物附着于基质表面与其分泌的胞外产物(extracellular polymeric substance,EPS)共同形成(Satuito et al,1995),在海洋环境中分布广泛。相关研究发现,生物被膜的细菌群落与附着有关,生物被膜中的变形菌门(Proteobacteria)减少会降低厚壳贻贝稚贝的附着(Yang et al,2016b)。不同的细菌生物被膜对贻贝的诱导能力不同(杨金龙等,2024),细菌自身的运动性(牟嘉仪等,2023)及在形成生物被膜过程中所产生的胞外物质会直接影响生物被膜对贻贝的诱导能力(徐嘉康等,2021; 杨金龙等,2012; 梁箫等,2020),如胞外多糖、蛋白质和无机离子等含量的增加可提高生物被膜对贻贝附着的诱导活性(陈慧娥等,2022; Peng et al,2020; 蔡雨珊等,2021; 杨金龙等,2021; 解静仪等,2023)。
硅藻作为自然生物被膜的重要组成部分,能够不依赖细菌独立形成生物被膜(Kawamura et al,1988),且大型海洋无脊椎动物会优先选择含有硅藻的生物被膜附着(Little et al,1991)。Harder 等(2002)研究发现,硅藻生物被膜能够诱导华美盘管虫(Hydroides elegans)幼虫的附着;Gallardo 等(2003)发现,与未形成生物被膜的表面相比,含有舟形藻的生物被膜上鲍(Haliotis asinine)的附着率更高;紫扇贝(Argopecten purpuratus)在硅藻形成的生物被膜上的附着率高于空白对照组(Avendaño-Herrera et al,2003)。但相较于生物被膜中细菌群落多样性及其调控海洋无脊椎动物作用机制的研究而言,生物被膜中硅藻的群落多样性研究较少,硅藻与贻贝等无脊椎动物之间的附着关系目前尚未报道。
浙江舟山枸杞岛地理位置特殊,近岸海域开阔,周边是筏式养殖厚壳贻贝的重要海域。为探究自然生物被膜中存在的硅藻及其生物被膜与厚壳贻贝稚贝附着之间的关系,本研究在枸杞岛海域通过制备不同日龄的自然生物被膜,分析自然生物被膜的干重、细菌密度、硅藻密度和叶绿素 a 含量等生物学特征,并通过 18S 扩增子和扫描电子显微镜拍照鉴定其种群组成,调查自然生物被膜对厚壳贻贝稚贝附着的诱导活性。本文旨在探究硅藻生物被膜作为厚壳贻贝稚贝附着诱导物的潜力,为解决贻贝绿色养殖过程中附苗难的核心问题提供新的视角,并为硅藻生物被膜的进一步研究及应用提供理论依据。
1 材料与方法
1.1 自然生物被膜的制备与收集
使用灭菌玻片(38 mm×26 mm)作为基底放置在 PVC 支架上,于 2023 年 5 月在中国浙江省枸杞岛海域(122°46′E; 30°43′N)浸泡 7、14、21 和 28 d,制备自然生物膜并进行生物测定,测定前用镊子摘除绿藻(Chlorophyta)、褐藻(Phaeophyta)和藤壶等大型生物,并用灭菌过滤海水润洗 3 次。
1.2 细菌和硅藻密度的测定
根据 Yang 等(2013)的方法,将生物被膜在 5% 福尔马林溶液中固定,细菌密度测定时用 0.1%吖啶橙避光染色 5 min,使用 1 000 倍荧光显微镜(Olympus BX51,日本)计数。硅藻细胞在 200 倍下计数,图像用扫描电镜(scanning electron microscope,SEM,TM4000,日本,加速电压为 5 kV,BSE H 模式)拍摄,每样本取 10 个随机视野计数。每被膜日龄设 3 个重复。
使用 ImageJ 软件(Version 1.52)处理放大倍数为 200 倍的 SEM 图像,使用阈值和计量分析工具测定自然生物被膜中的硅藻覆盖率。每被膜日龄设 9 个重复。
1.3 叶绿素 a 浓度测定
根据 Wang 等(2012) 的方法计算叶绿素 a(Chlorophyll a,Chl a)浓度,使用无菌玻片刮下生物被膜,过滤后在 4℃下用 90%丙酮避光提取 14 h,并振荡 1 h。3 000 r/min 离心 10 min,用分光光度计(UNIC 2100 spectrophotometer,美国)在 630、647、 664 和 750 nm 测定上清液 Chl a 的浓度,计算公式如下(Ma et al,2011)。每被膜日龄设 6 个重复。
式中,D630、D647、D664 和 D750 为相应波段的吸光度,Ve 为提取体积,A 为玻片面积,d 为比色皿的光学长度。
1.4 硅藻形态学鉴定及高通量测序
基于 SEM 成像观察硅藻的形态学特征(Tomas et al,1996)进行硅藻形态学鉴定。
对自然生物被膜组织进行 DNA 提取和高通量测序:刮取生物被膜后,8 000 r/min 离心 10 min,速冻沉淀,并在–80℃保存,寄到北京诺禾致源科技股份有限公司进行高通量测序(引物 573F 序列:CGCGGT AATTCCAGCTCCA;引物 951R序列:TTGGYRAATG CTTTC GC,扩增区域为 18S rRNA)。每被膜日龄设 3 个重复。硅藻分类系统参考自 Round 等(1990),属水平种间关系网使用诺禾云平台生成。硅藻中文名称定名参照林更铭等(2021)。
1.5 厚壳贻贝附着实验
按照 Yang 等(2014a)的方法计算附着率,评估自然生物被膜的诱导活性。本研究所用厚壳贻贝稚贝由嵊泗海洋科技开发服务中心提供,在实验室 18℃避光暂养 7 d,每天定量投喂青岛大扁藻(Tetraselmis helgolandica),每 2 d 换 1 次水。取覆有自然生物被膜的样本玻片放入灭菌玻璃皿(64 mm × 19 mm),倒入 20 mL 灭菌过滤海水,每皿放 10 只稚贝,18℃下避光进行实验,记录第 24、48、72 小时的附着率。每被膜日龄设 9 个重复,空白玻片作为对照。实验过程中操作人员严格遵守上海海洋大学伦理规范,并按照上海海洋大学伦理委员会制定的规章制度执行。
1.6 数据分析
所有统计计算均采用 JMP10 软件,使用 Shapiro Wilk 检验分布正态性。由 Spearman 秩相关系数检验相关性。P<0.05 时认为差异有统计学意义。数据图形由 Prism8.4.2 和 Origin2021 绘制。
2 结果
2.1 自然生物被膜特征
生物被膜膜干重随被膜日龄增加而显著增加, 28 d 被膜日龄的膜干重达到 5.91 mg。细菌密度随被膜日龄呈显著性递增趋势,在 7~14 d、21~28 d 显著增长,最高密度为 2.68×106 cell/cm2。硅藻密度在 7~14 d 缓慢增长,14~21 d 迅速提升,在 21 d 达到峰值,密度达 4.48×105 cell/cm2,21~28 d 略有减少。Chl a 浓度表现为与硅藻密度类似的趋势(图1),在 21 d 达到峰值,28 d 有下降趋势,但与 21 d 无显著性差异。自然生物被膜中的硅藻密度与多样性亦可以通过硅藻覆盖率及 SEM 图像验证(图2),4 组覆盖率分别为(12.33±3.82)%、(45.82±7.56)%、(62.16±10.72)% 和(52.87±6.85)%,高日龄组被膜覆盖率高于低日龄组,但 28 d 与 14 d 差异不显著。
2.2 自然生物被膜对厚壳贻贝的诱导活性
研究厚壳贻贝稚贝在自然生物被膜上第 24 小时的附着状态可知:相较于空白组,各被膜日龄的稚贝附着率均显著增高。在 7~21 d 被膜日龄的生物被膜上,附着率随被膜日龄显著增长,21 d 出现峰值,附着率达到 92%;21~28 d 被膜日龄的附着率下降(图3),但差异不显著。
图1生物被膜特性
Fig.1Characteristics of biofilm
不同字母表示差异显著(P<0.05),下同。
Values those are significantly different between each other at P<0.05 are indicated by different letters above the bars. The same below.
图2生物被膜中硅藻扫描电镜图像
Fig.2SEM images of diatom on biofilms
自然生物被膜中硅藻密度、Chl a 浓度、干重与被膜日龄呈正相关关系,同时与细菌密度呈正相关。厚壳贻贝附着率与生物被膜 4 个特性均呈正相关(P<0.05)。在影响厚壳贻贝附着率的因素中,硅藻密度与厚壳贻贝附着率的相关性最强(R=0.96),二者相关性明显高于细菌密度(R=0.88,图4)。
图3厚壳贻贝稚贝附着率
Fig.3Settlement rates of M. coruscus
图4生物被膜特性及与厚壳贻贝附着的相关性
Fig.4Characteristics of biofilm and correlation with settlement of M. coruscus
星号表示相关性显著, *:P<0.05;**:P<0.01;***:P<0.001。
Asterisks indicate significant correlation, *: P<0.05; **: P<0.01; ***: P<0.001.
2.3 自然生物被膜中硅藻的组成
硅藻密度与厚壳贻贝附着率呈正相关,且在生物被膜 4 个特性中与厚壳贻贝附着率有最高的相关性(R=0.96)。为探究自然生物被膜硅藻群落的多样性,分析了物种丰度指数和物种多样性指数等 α 多样性指标。高通量分析显示,4 个被膜日龄的组间差异显著(P<0.05),组内差异不显著(P>0.05),这表明分组具有高度的可信度与可靠性。4 个被膜日龄的 Shannon 指数无显著性差异,21 d 的平均值最低(1.392);Chao1 指数 21 d 最低(31),且与 7 d 有显著性差异(表1)。
表1自然生物被膜中硅藻的 Chao 1 和 Shannon 指数
Tab.1Chao 1 and Shannon index of diatom in biofilms
注:同行数据肩标的不同小写字母表示差异显著。** 表示 P<0.01;***表示 P<0.001。
Notes: In the same row, data with different lowercase letters superscripts mean significant difference. ** indicated P<0.01; *** indicated P<0.001.
高通量测序显示,自然生物被膜中的微生物包含 10 个门、18 个纲、33 个目、52 个科、65 个属,共 86 个种。硅藻门生物在每个被膜日龄的生物被膜中均处于优势地位,平均相对丰度为 0.96,包含 4 个纲、 10 个目、17 个科、23 个属,共 32 个种(表2,图5)。样本中丰度前 5 的属为楔形藻属(Licmophora)(在硅藻门中的平均相对丰度为 0.82)、齿状藻属(Odontella)、海生双眉藻属(Halamphora)、舟形藻属(Navicula)和波利藻属(Pauliella)。其中优势种为奇异楔形藻(Licmophora paradoxa),相对丰度为 0.82(图6)。
自然生物被膜中的硅藻有脆杆藻纲(Fragilariophyceae)、硅藻纲(Bacillariophyceae)、中型硅藻纲(Mediophyceae)和极少量的圆筛藻纲(Coscinodiscophyceae)。脆杆藻纲在每个被膜日龄的生物被膜中都占绝对优势,相对丰度为 0.82,其相对丰度在第 7~14 天增长,第 14~21 天迅速下降,第 21~28 天提高,其中最多的是楔形藻科(Licmophoraceae)的楔形藻属(Licmophora)。硅藻纲前五的科为双肋藻科(Amphipleuraceae)、异菱藻科(Anomoeoneidaceae)、舟形藻科(Naviculaceae)、卵形藻科(Cocconeidaceae)和硅藻科(Bacillariaceae)。中型硅藻纲的优势为齿状藻科(Odontellaceae),优势属为齿状藻属,其在第 7、 14、28 天的相对丰度都较低,仅在第 21 天表现出较高的峰值,相对丰度为 0.17,且丰度最多的种为 Odontella sp. TN-2014(图6)。
2.4 硅藻对厚壳贻贝的诱导活性及相关性分析
在本研究所涉及的硅藻中,与厚壳贻贝附着率呈正相关的硅藻总相对丰度为 89.53%(图7A)。筛选前 16 种与厚壳贻贝稚贝附着相关的硅藻,旋链海链藻(Thalassiosira curviseriata)与奇异楔形藻的相对丰度与厚壳贻贝附着的相关性最强且呈正相关。优势种奇异楔形藻的相对丰度与厚壳贻贝附着率呈极显著正相关(P<0.001,图7B)。半舟藻属(Seminavis)和菱形藻属(Nitzschia)的相对丰度与稚贝附着呈负相关。
3 讨论
3.1 不同被膜日龄对自然生物被膜特性的影响
生物被膜是一个由细菌、硅藻等微生物组成的多物种群落。生物被膜的形成过程在时间维度上可以概括为 4 个阶段:初始细胞附着在基底上的可逆附着,持续分泌胞外物质的不可逆附着,生物被膜的成熟,以及生物被膜在最后阶段的分散(Liu et al,2024; Qian et al,2009)。自然条件下,生物被膜在 28 d 前可达到成熟期,其内部会处于动态平衡状态(Oemke et al,1986)。在本研究中,干重和细菌密度随被膜日龄增长而增长,硅藻密度和 Chl a 浓度随被膜日龄增长呈先增高后降低的趋势,且以上特性均与被膜日龄具有显著相关性,这与以往研究结果相一致(Yang et al,2014a; Bao et al,2007)。其中,硅藻密度和细菌密度与被膜日龄的相关性系数均大于 0.9。细菌密度在 7~14 d 增长迅速,且随被膜日龄持续增长,而硅藻密度的指数增长时期在 14~21 d(图1),这表明生物被膜中细菌层比硅藻层更先形成。诱导无脊椎动物附着的能力也是生物被膜的特性之一,本研究中,生物被膜诱导厚壳贻贝稚贝的附着率随被膜日龄先增高后平稳,高被膜日龄(21 d 和 28 d)的生物被膜诱导活性无差异。此时,硅藻密度和 Chl a 浓度与稚贝附着的变化趋势一致,且二者之间具有相关性。 Chl a 是分析生物被膜群落的重要参数,用以表征生物被膜的生产力。本研究的结果表明,被膜日龄可能通过影响硅藻密度从而影响 Chl a 的含量。因此,硅藻在生物被膜中诱导贻贝稚贝附着过程中发挥了重要的作用。
3.2 不同被膜日龄自然生物被膜硅藻群落结构分析
生物被膜日龄不仅影响生物被膜特性,也会影响生物被膜上微生物的生物量以及群落结构(李局等,2024)。以往研究多关注于细菌的群落变化,本研究则着重于硅藻群落结构变化的分析。在本研究中 4 组样本的 Shannon 指数无差异,表明各被膜日龄的生物被膜中硅藻的物种分布相对较均匀。在生物被膜形成初期(1~3 d),硅藻群落的物种组成相对简单,主要以一些耐逆性较强、生长迅速的先锋硅藻种类为主,如舟形藻属和齿状藻属。随着被膜日龄的增加(7~14 d),物种丰富度逐渐上升,一些对环境要求稍高、生长相对缓慢的硅藻种类开始出现并逐渐增多,如海链藻属(Thalassiosira)。到生物被膜发育后期(21 d 及以后),物种组成也趋于稳定,此时,生物被膜已经成熟且膜上的硅藻种类少而密度大。结合 Chao 1 指数的结果发现,生物被膜形成过程中群落结构会随被膜日龄产生变化。本研究检测的自然生物被膜中的硅藻有脆杆藻纲、硅藻纲、中型硅藻纲和极少量的圆筛藻纲等,脆杆藻纲的楔形藻属在每个被膜日龄的生物被膜中都占绝对优势,这可能与其生活方式有关,其结构呈扇形,体积较大,附着后不会移动(Kawamura et al,1994),多为群体生活。另外,由于采样时间为春季,温度升高可能导致枸杞岛海域奇异楔形藻丰度较高,进而被动沉降附着在基底上,占据了生物被膜上的优势地位(Rousseau et al,2002; Seveno et al,2023)。
表2自然生物被膜中的硅藻种
Tab.2Diatom species in biofilms
图5本研究中形态学鉴定出的硅藻种
Fig.5Diatom species identified by morphological in this study
1拍摄自电子显微镜(TM4000,日本),2 拍摄自光学显微镜(Olympus BX51,日本)。 A:奇异楔形藻(Lyngbye,1835);B:海生双眉藻(Hohn & Hellerman,1966);C:波利藻(Grunow,1997); D:海生双眉藻(Wachnicka & Gaiser,2007);E:施特劳宾曲丝藻(Lange-Bertalot,1999)。
1 was captured by electron microscope (TM4000, Japan) , and 2 was captured by optical microscope (Olympus BX51, Japan) . A: Licmophora paradoxa (Lyngbye, 1835) ; B: Halamphora bicapitata (Hohn & Hellerman, 1966) ; C: Pauliella taeniata (Grunow, 1997) ; D: Halamphora subtropica (Wachnicka & Gaiser, 2007) ; E: Achnanthidium straubianum (Lange-Bertalot, 1999) .
图6属水平硅藻相对丰度
Fig.6Relative abundance of diatom genus in biofilms
图7硅藻藻种与厚壳贻贝附着的相关性
Fig.7Correlation between species of diatoms and the settlement of M. coruscus
A:与厚壳贻贝附着相关的典型硅藻在硅藻群落中的占比;B:典型硅藻藻种与厚壳贻贝附着的相关性。
A: The proportion of typical diatoms associated with the settlement of M. coruscus in the diatom community; B: Correlation between species of typical diatoms and the settlement of M. coruscus.
3.3 自然生物被膜硅藻群落特征与厚壳贻贝稚贝附着的关系
生物被膜在许多无脊椎动物幼虫和成体的附着中至关重要(Yang et al,2014b; Lawes et al,2018; Huang et al,2012)。硅藻作为生物被膜的重要组成成分,其群落特征变化与厚壳贻贝稚贝附着之间的关系尚不明确。本研究通过不同日龄生物被膜群落特征的分析、硅藻相对丰度与稚贝附着的相关性分析等,探究硅藻群落特征与贻贝附着之间的关系。结果发现,高被膜日龄(21 d 和 28 d)的生物被膜具有相似的生物学特性和稳定的群落特征,对厚壳贻贝稚贝附着具有较高诱导能力。此时,生物被膜中楔形藻属、齿状藻属和曲壳藻属(Achnanthes)呈现较高的相对丰度,其中曲壳藻属是对无脊椎动物附着具有诱导活性的硅藻,能促进华美盘管虫和多室草苔虫(Bugula neritina)的附着(Lam et al,2005; Dahms et al,2004)。而低被膜日龄生物被膜相较于高被膜日龄生物被膜诱导厚壳贻贝稚贝附着能力较弱,此时生物被膜中海生双眉藻属、舟形藻属和菱形藻属等相对丰度较高。其中,菱形藻属是对无脊椎动物具有非诱导活性的藻属,多室草苔虫和华美盘管虫在碎片菱形藻(Nitzschia frustulum)形成的生物被膜上附着率较低(Lam et al,2005; Dahms et al,2004)。另外,本研究所检测到的硅藻中,大多数硅藻的相对丰度与稚贝附着成正相关。在前 16 种藻属中,海链藻属、楔形藻属、微眼藻属(Minutocellus)和曲壳藻属的正相关性最显著,除楔形藻外,均表现出高被膜日龄组的相对丰度高于低被膜日龄组;半舟藻属和菱形藻属等的相对丰度与稚贝附着显著负相关,其在低日龄组的相对丰度较高。由此可见,生物被膜诱导无脊椎动物的能力与其诱导活性硅藻和非诱导活性硅藻的种类及相对丰度存在一定关系。
以往生物被膜中细菌群落的研究发现,细菌密度并不是诱导厚壳贻贝稚贝附着的主要因素(陈慧娥等,2022; 吴冠举等,2023)。然而硅藻密度是否为诱导厚壳贻贝稚贝附着的主要因素并不明确。本研究中,厚壳贻贝的稚贝附着率随硅藻密度的增加而增加,与纹藤壶(Amphibalanus amphitrite)和多室草苔虫等无脊椎动物的研究结果一致(Jouuchi et al,2007; Kitamura et al,1987)。另外,研究发现,藤壶的附着率与卵形藻属(Cocconeis)生物被膜细胞密度成正相关(Jouuchi et al,2007),而本研究中卵形藻属的相对丰度与厚壳贻贝稚贝附着呈负相关,这表明生物被膜中硅藻的诱导附着活性也可能因附着物种不同而存在差异。某些硅藻可能对特定种类的无脊椎动物具有更强的诱导作用,这种特异性响应可能与其生态习性、生活环境以及生理特征等因素有关。
综上所述,自然生物被膜中硅藻密度越高,厚壳贻贝附着率越高;生物被膜中诱导活性硅藻及非诱导活性硅藻的种类及其相对丰度与厚壳贻贝稚贝附着有密切关系。其中,曲壳藻、双眉藻、舟形藻以及菱形藻等硅藻与稚贝附着的关系值得关注及进一步研究。本研究结果为研究生物被膜硅藻群落多样性与无脊椎动物附着之间的关系提供了理论依据,对硅藻及其生物被膜在厚壳贻贝等贝类高效养殖的潜在应用具有重要理论意义。




