ABED R M M, KOHLS K, DE BEER D. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. Environmental Microbiology, 2007, 9(6): 1384-1392
ASPLUND-SAMUELSSON J, HUDSON E P. Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLoS Computational Biology, 2021, 17(2): e1008742
BAR-EVEN A, FLAMHOLZ A, NOOR E, et al. Thermodynamic constraints shape the structure of carbon fixation pathways. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2012, 1817(9): 1646-1659
BARTON S, JENKINS J, BUCKLING A, et al. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecology Letters, 2020, 23(4): 722-733
BUSHNELL B. BBMap: A fast, accurate, splice-aware aligner. Berkeley, CA (United States): Lawrence Berkeley National Laboratory, 2014
CAMPBELL B J, CARY S C. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Applied and Environmental Microbiology, 2004, 70(10): 6282-6289
CHEN J, WU N, YAO B L, et al. Assessing the health of Beibu Gulf rim, coastal South China Sea, with a scale application of the ocean health index. Marine Environmental Science, 2019, 38(6): 868-873[陈洁, 吴霓, 姚宝龙, 等. 应用海洋健康指数对环北部湾中国近岸海洋健康的评价. 海洋环境科学, 2019, 38(6): 868-873]
CHENG A Q, KANG W H, LI W, et al. Research progress in the process and mechanisms of autotrophic carbon sequestration driven by soil microorganisms in Karst areas. Acta Microbiologica Sinica, 2021, 61(6): 1525-1535[程澳琪, 康卫华, 李为, 等. 岩溶区土壤微生物驱动的自养固碳过程与机制研究进展. 微生物学报, 2021, 61(6): 1525-1535]
CHI X Q, ZHAO Z Y, HAN Q X, et al. Insights into autotrophic carbon fixation strategies through metagonomics in the sediments of seagrass beds. Marine Environmental Research, 2023, 188: 106002
FAST A G, PAPOUTSAKIS E T. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Current Opinion in Chemical Engineering, 2012, 1(4): 380-395
FIGUEROA I A, BARNUM T P, SOMASEKHAR P Y, et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(1): E92-E101
GUO J. Nitrogen biogeochemical processes and geochemical record of anthropogenic nutrient loading in coastal regions of Beibu Gulf, Guangxi Province. Doctoral Dissertation of Guangxi University, 2020[郭靖. 广西北部湾近岸海域氮生物地球化学过程及营养盐沉积记录. 广西大学博士研究生学位论文, 2020]
HE W D. Spatial distribution, community structure and predictive functional analysis of bacterioplankton in seawaters of northern of Beibu Gulf in summer. Master’s Thesis of Shanghai Ocean University, 2021[何伟东. 北部湾北部海域夏季浮游细菌空间分布、群落结构及其功能预测. 上海海洋大学硕士研究生学位论文, 2021]
HU G P, LI Y, YE C, et al. Engineering microorganisms for enhanced CO2 sequestration. Trends in Biotechnology, 2019, 37(5): 532-547
HUANG Q, HUANG Y M, WANG B R, et al. Metabolic pathways of CO2 fixing microorganisms determined C-fixation rates in grassland soils along the precipitation gradient. Soil Biology and Biochemistry, 2022, 172: 108764
HUGENHOLTZ P, TYSON G W. Metagenomics. Nature, 2008, 455(7212): 481-483
HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 2010, 11: 119
JI F Y, MING H X, LI H B, et al. Diversity of CO2 fixation gene in the surface waters of northern South China Sea in the Calvin cycle. Acta Scientiae Circumstantiae, 2016, 36(11): 4037-4043[季凤云, 明红霞, 李洪波, 等. 南海表层海水参与卡尔文循环的固碳基因多样性研究. 环境科学学报, 2016, 36(11): 4037-4043]
JIANG Q Y, JING H M, JIANG Q L, et al. Insights into carbon-fixation pathways through metagonomics in the sediments of deep-sea cold seeps. Marine Pollution Bulletin, 2022, 176: 113458
JIANG W W, FANG J H, LIN F, et al. Evaluation of ecological carrying capacity and functions of Manila clam, Ruditapes philippinarum in Jiaozhou Bay. Progress in Fishery Sciences, 2022, 43(5): 61-71[姜娓娓, 房景辉, 蔺凡, 等. 胶州湾菲律宾蛤仔生态容量评估及其碳汇功能. 渔业科学进展, 2022, 43(5): 61-71]
JIAO N Z. Marine carbon fixation and storage—On the important role of microorganisms in it. Scientia Sinica (Terrae), 2012, 42(10): 1473-1486[焦念志. 海洋固碳与储 碳——并论微型生物在其中的重要作用. 中国科学: 地 球科学, 2012, 42(10): 1473-1486]
KÖNNEKE M, SCHUBERT D M, BROWN P C, et al. Ammonia-oxidizing Archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(22): 8239-8244
LEMA K A, CONSTANCIAS F, RICE S A, et al. High bacterial diversity in nearshore and oceanic biofilms and their influence on larval settlement by Hydroides elegans (Polychaeta). Environmental Microbiology, 2019, 21(9): 3472-3488
LI C R, ZHANG X, LIU C M. Carbon core-Calvin cycle and regulation in photosynthesis. Journal of Life Sciences, 2024: 1-16[李春荣, 张馨, 刘翠敏. 光合作用碳反应核心-卡尔文循环及调控. 生命科学, 2024: 1-16]
LI D H, LIU C M, LUO R B, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31(10): 1674-1676
LI J B, XIAO Q, HE Q F, et al. Research regarding the autochthonous dissolved organic carbon to recalcitrant dissolved organic carbon transformation mechanism in a typical surface Karst River. Water, 2024, 16(18): 2584
LI J, GONG P H, GUAN C T, et al. Carbon sequestration of additives of artificial reefs and its effect on carbon fixation of Ostrea plicatula Gmelin. Progress in Fishery Sciences, 2016, 37(6): 100-104[李娇, 公丕海, 关长涛, 等. 人工鱼礁材料添加物碳封存能力及其对褶牡蛎(Ostrea plicatula)固碳量的影响. 渔业科学进展, 2016, 37(6): 100-104]
LIU B L, QI L, ZHENG Y L, et al. Four years of climate warming reduced dark carbon fixation in coastal wetlands. The ISME Journal, 2024a, 18(1): wrae138
LIU B L, ZHENG Y L, WANG X Y, et al. Active dark carbon fixation evidenced by 14C isotope assimilation and metagenomic data across the estuarine-coastal continuum. Science of the Total Environment, 2024b, 914: 169833
LIU B, XIANG S M, ZHAO G, et al. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metabolic Engineering, 2019a, 51: 121-130
LIU X N, WANG H Q, LI H X, et al. Carbon sequestration pathway of inorganic carbon in partial nitrification sludge. Bioresource Technology, 2019b, 293: 122101
LIU Y Y, WANG S, LI S Z, et al. Advances in molecular ecology on microbial functional genes of carbon cycle. Microbiology China, 2017, 44(7): 1676-1689[刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展. 微生物学通报, 2017, 44(7): 1676-1689]
LIU Z. Microbial pathways of atmospheric carbon dioxide fixation in soils in Mu Us Desert. Doctoral Dissertation of Beijing Forestry University, 2019[刘振. 毛乌素沙地土壤固定大气二氧化碳的微生物途径. 北京林业大学博士研究生学位论文, 2019]
LODER A J, HAN Y J, HAWKINS A B, et al. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation cycle in extremely thermoacidophilic Archaea. Metabolic Engineering, 2016, 38: 446-463
LYNN T M, GE T D, YUAN H Z, et al. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microbial Ecology, 2017, 73(3): 645-657
MA J B. An ecological study on marine microorganisms in large-scale mariculture-Zhelin Bay, Eastern Guangdong. Master’s Thesis of Shantou University, 2006[马继波. 粤东 大规模增养殖区柘林湾海洋微生物的生态学研究. 汕头 大学硕士研究生学位论文, 2006]
MO S M. The characteristics of sulfate reduction transformation mediated by microorganisms in a subtropical mangrove wetland of Beibu Gulf. Doctoral Dissertation of Guangxi University, 2022[莫淑名. 亚热带北部湾海洋红树林湿地微生物介导的硫酸盐还原转化特征研究. 广西大学博士研究生学位论文, 2022]
NIE S Q. Metagomic analysis of the nitrogen cycle in a subtropical mangrove ecosystem in the Beibu Gulf. Master’s Thesis of Guangxi University, 2021[聂世清. 亚热带北部湾红树林生态系统中氮循环的宏基因组学研究. 广西大学硕士研究生学位论文, 2021]
OREN A. Thermodynamic limits to microbial life at high salt concentrations. Environmental Microbiology, 2011, 13(8): 1908-1923
QUINCE C, WALKER A W, SIMPSON J T, et al. Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 2017, 35(9): 833-844
REN K J, MING H X, ZHANG J H, et al. Carbon sink capacity assessment of marine shellfish and macroalgae in Dalian in 2022. Progress in Fishery Sciences, 2024, 45(6): 38-46[任恺佳, 明红霞, 张继红, 等. 大连市2022年贝藻养殖碳汇能力评估. 渔业科学进展, 2024, 45(6): 38-46]
SIMON C, DANIEL R. Metagenomic analyses: Past and future trends. Applied and Environmental Microbiology, 2011, 77(4): 1153-1161
STIBAL M, TRANTER M, TELLING J, et al. Speciation, phase association and potential bioavailability of phosphorus on a Svalbard glacier. Biogeochemistry, 2008, 90(1): 1-13
SUDHIR P, MURTHY S D S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 2004, 42(4): 481-486
SUN W, ZHANG J H, WU W G, et al. Carbon footprint assessment of cultured kelp based on life cycle assessment. Progress in Fishery Sciences, 2022, 43(5): 16-23[孙威, 张继红, 吴文广, 等. 基于生命周期法的养殖海带的碳足迹评估. 渔业科学进展, 2022, 43(5): 16-23]
TANG K H, TANG Y J, BLANKENSHIP R E. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Frontiers in Microbiology, 2011, 2: 165
TANG Q S. The past and future of sustainable development of Chinese modern fisheries. Progress in Fishery Sciences, 2023, 44(6): 1-6[唐启升. 中国式现代渔业可持续发展的过去和未来. 渔业科学进展, 2023, 44(6): 1-6]
TANG Y, LIU Y C, YANG J, et al. Gene diversity involved in Kalvin pathway of carbon fixation and its response to environmental variables in surface sediments of the northern Qinghai-Tibetan Plateau lakes. Earth Science, 2018, 43(S1): 19-30[唐阳, 刘永超, 杨渐, 等. 青藏高原北部湖泊表层 沉积物参与卡尔文循环的固碳基因多样性及其影响因素. 地球科学, 2018, 43(S1): 19-30]
WANG Q, ZHANG Q Y, HAN Y C, et al. Carbon cycle in the microbial ecosystems of biological soil crusts. Soil Biology and Biochemistry, 2022, 171: 108729
WANG W J. Microbial-driven mechanisms of key processes of carbon cycling in surface sediments of Bohai Sea. Master’s Thesis of Dalian Ocean University, 2024[王文静. 渤海表层沉积物中碳循环关键过程微生物驱动机制. 大连海洋大学硕士研究生学位论文, 2024]
WANG Z, JUAREZ D L, PAN J F, et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environmental Microbiology, 2019, 21(10): 3862-3872
XUE C X, LIN H Y, ZHU X Y, et al. DiTing: A pipeline to infer and compare biogeochemical pathways from metagenomic and metatranscriptomic data. Frontiers in Microbiology, 2021, 12: 698286
XUN Z R, NI Y, SUN X Y, et al. Microbial structure and composition difference in different temperature zones and four oceans. Journal of Yantai University (Natural Science and Engineering), 2025, 38(2): 165-176[寻卓然, 倪妍, 孙晓玥, 等. 四大洋及不同温度带海洋微生物组成结构和差异分析. 烟台大学学报(自然科学与工程版), 2025, 38(2): 165-176]
YOU Y N, ZHU Y F, CHEN F, et al. Effects of vegetation types on the potential and pathway of microbial carbon sequestration in reclaimed soil of open-pit mine. Journal of Ecology and Rural Environment, 2023, 39(9): 1170-1179[尤云楠, 朱燕峰, 陈浮, 等. 植被类型对露天矿复垦土壤微生物固碳潜力及路径的影响. 生态与农村环境学报, 2023, 39(9): 1170-1179]
YU KING HING N, ARYAL U K, MORGAN J A. Probing light-dependent regulation of the Calvin cycle using a multi-omics approach. Frontiers in Plant Science, 2021, 12: 733122
YUAN H Z, QIN H L, LIU S L, et al. Advances in research of molecular ecology of carbon fixation microorganism. Scientia Agricultura Sinica, 2011, 44(14): 2951-2958[袁红朝, 秦红灵, 刘守龙, 等. 固碳微生物分子生态学研究. 中国农业科学, 2011, 44(14): 2951-2958]
YUE X L, XU L, CUI L, et al. Metagenome-based analysis of carbon-fixing microorganisms and their carbon-fixing pathways in deep-sea sediments of the southwestern Indian Ocean. Marine Genomics, 2023, 70: 101045
ZHAO Y S, SHAN X J, YANG T, et al. Contributions of carbon sources to food webs adjacent to the Miaodao Archipelago and their implications for carbon sink fisheries. Progress in Fishery Sciences, 2022, 43(5): 132-141[赵永松, 单秀娟, 杨涛, 等. 庙岛群岛毗邻海域秋季底栖食物网潜在碳来源贡献及对碳汇渔业的思考. 渔业科学进展, 2022, 43(5): 132-141]