黄海海州湾筏式长牡蛎和紫贻贝养殖区浮游植物群落特征及影响因子分析
doi: 10.3969/j.issn.2095-9869.20241125003
孟嵘钊1,2 , 张继红2 , 王新萌2 , 吴文广2 , 刘毅2 , 宫雪2 , 谭柳书仪1,2 , 马浩杰2
1. 上海海洋大学水产与生命学院 上海 201306
2. 中国水产科学研究院黄海水产研究所农业农村部海洋渔业与可持续发展重点实验室 山东 青岛 266071
基金项目: 国家自然科学基金面上项目 (42376160) 和政府采购服务 (SDBAZC20230102) 共同资助
Phytoplankton Community Characteristics and Influencing Factors in the Raft Oyster and Mussel Culture Area of Haizhou Bay, Yellow Sea, China
MENG Rongzhao1,2 , ZHANG Jihong2 , WANG Xinmeng2 , WU Wenguang2 , LIU Yi2 , GONG Xue2 , TAN Liushuyi1,2 , MA Haojie2
1. School of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306 , China
2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071 , China
摘要
为探究贝类养殖和环境因子对浮游植物群落结构的影响,于 2023 年 3—12 月对海州湾三倍体长牡蛎(Crassostrea gigas)和紫贻贝(Mytilus edulis)混养区域及非养殖区域的浮游植物与环境因子进行调查。采用双因素方差分析(two-way ANOVA)、典型判别分析(canonical discriminant analysis, CDA)和冗余分析方法(redundancy analysis, RDA)研究浮游植物群落结构的季节和区域变化及其与环境因子的关系。调查区域共鉴定浮游植物 3 门 33 属 69 种,硅藻门(Bacillariophyta)为优势类群,种类数占比约为 87%。调查期间共有 14 种浮游植物作为优势种出现,其中多属硅藻门,且季节区域变化明显。浮游植物丰度变化范围为(1.40~739.11)×104 cell/m3 ,受季节和区域影响显著(P<0.05), 10 月营养盐浓度最高时,丰度达到全年最高值。空间分布上,浮游植物丰度近岸高于远岸,贝类养殖一区丰度各季节均高于其他区域。物种多样性指数区域和季节差异显著(P<0.05),二区浮游植物群落多样性指数均高于其他区域。9 月贝类养殖区(一区和二区)浮游植物群落多样性指数均高于非养殖区(航道区和外海区)。虽有部分长牡蛎死亡情况,但浮游植物群落结构可能仍受到存活的长牡蛎和紫贻贝活动影响,养殖区浮游植物群落更稳定。CDA 结果显示,一区、二区与外海区浮游植物群落结构相似度较低,贝类养殖对浮游植物有一定程度影响。RDA 结果表明,浮游植物优势种丰度受温度、pH、硝酸盐和亚硝酸盐影响。贝类通过上行和下行控制能够改变浮游植物群落组成。本研究初步探究了贝类养殖区浮游植物与贝类养殖和环境因子之间的关系,为贝类养殖规划和养殖容量评估提供了数据支持。
Abstract

Phytoplankton, which serve as primary producers within marine ecosystems, exhibit rapid responsiveness to ecological shifts in aquatic environments. Thus, they play a pivotal role in maintaining the health and stability of these systems. China is a leading aquaculture nation boasting approximately 70% of global aquaculture output, with shellfish accounting for 72% of total production. Phytoplankton serve as the primary food source for shellfish, which regulate their biomass through filter feeding mechanisms. Furthermore, the excretions from shellfish modify nutrient concentrations in the water, indirectly influencing the composition of phytoplankton communities and consequently impacting water quality and overall ecosystem health. By examining the intricate relationship between shellfish and phytoplankton and exploring the ramifications of shellfish farming activities on phytoplankton populations, we can anticipate and address the potential effects of marine environmental changes on aquaculture. This endeavor is crucial for assessing ecological carrying capacity and planning shellfish farming activities, thereby ensuring a harmonious balance between marine economic development and ecological preservation. Haizhou Bay, located between the southern part of the Shandong Peninsula and the northern part of Jiangsu Province, has shellfish and Porphyra as its main farming species, with shellfish being the predominant species. However, few studies focused on the relationship between shellfish culture and phytoplankton communities in Haizhou Bay.

Thus, this study aimed to explore the effects of a mixed cultivation of oyster and mussel, and marine environmental factors on phytoplankton community structure. Surveys of phytoplankton and environmental factors in Haizhou Bay were investigated in March, July, September, October, and December 2023. The survey was divided into four areas: Area 1, Area 2, waterway, and offshore. Areas 1 and 2 served as aquaculture areas, whereas the waterway and offshore areas served as non-aquaculture areas. The shallow-water type Ⅲ plankton network was used to vertically dragged from the seabed to the sea surface to collect phytoplankton biological samples. Environmental factors of sea surface and bottom were investigated, and the average value was calculated for data analysis. Two-way analysis of variance was performed on environmental factors and phytoplankton communities for seasonal and regional changes. Canonical discriminant analysis (CDA) was used to analyze the similarity of phytoplankton community structure in different areas, and redundancy analysis (RDA) was conducted to study the relationship between predominant phytoplankton species and environmental factors.

Significant seasonal differences in temperature, salinity, pH, dissolved oxygen, chemical oxygen demand, and nutrient concentration were observed in the survey area (P<0.001). Water temperature and salinity were affected by terrestrial inputs. In July, September, and December, the nutrient salt concentrations in Areas 1 and 2 were higher than those in the other regions. A total of 69 species of phytoplankton in 33 genera and 3 phyla were identified in the survey area, with Bacillariophyta being the predominant group, accounting for 87% of the species. Fourteen dominant species appeared in the survey, including Chaetoceros lorenzianus, Chartoceros sp., Coscinodiscus grannii, and Skeletonema costatum, most of which belonged to Bacillariophyta, with significant seasonal and regional variations. Significant differences in phytoplankton abundance (1.40×104 –739.11×104 cell/m3 ) were found between seasons and regions (P<0.05). After the red tide in September, the abundance of phytoplankton decreased compared with that in July and reached the highest value in October. Affected significantly by terrestrial inputs, the abundance in Area 1 was higher than that in the other areas in all seasons, and the surveyed area generally had higher abundance of nearshore phytoplankton than the offshore area. Significant regional and seasonal differences in species diversity index were found (P<0.05). The survey conducted in September, following the occurrence of a red tide, showed that the phytoplankton diversity index was higher in the aquaculture areas than in the non-aquaculture areas. Although some oysters died, the proportion of remaining shellfish in farming was still significant, and shellfish activities possibly increased the stability of the phytoplankton community to a certain extent. CDA results showed that the similarity of phytoplankton community structure between the aquaculture and offshore areas was low, and shellfish activities can influence the composition of the phytoplankton community structure. The waterway area, due to its proximity to the bay and slower water exchange, had a high similarity in phytoplankton community structure to Area 2. RDA results showed that the abundance of dominant species of phytoplankton were affected by environmental factors such as temperature, pH, NO3-N concentration, and NO2-N concentration, and the abundance of dominant species positively correlated with nutrient concentration in July, September, and October. In Area 1, environmental factors such as water temperature and salinity and nutrient concentration were greatly affected by terrestrial inputs, and the changes in phytoplankton community in this area may be affected by geographical location and shellfish farming activities. This study preliminarily explored the relationship between phytoplankton and environmental factors in shellfish culture area, and its results may serve as a basis for shellfish culture planning and aquaculture capacity assessment in Haizhou Bay.

作为海洋生态系统中重要的初级生产者,浮游植物通过光合作用将无机碳和营养物质转化为生物质,对能量流动、物质循环和生物多样性有至关重要的作用(Gargaud et al,2011; Chassot et al,2010),其群落结构能够快速响应水体温度、营养盐等环境因素的变化,是海域环境监测的重要指标(Rhee et al,1981; 高玉等,2021; 曲克明等,2000; 彭欣等,2006)。滤食性贝类作为海水养殖的重要组成部分,主要以浮游植物为食。研究发现,贝类选择性摄食浮游植物,能够促进微微型藻类的生长,直接影响浮游植物群落组成(Pales Espinosa et al,2016; 肖雪艳等,2022)。贝类滤食对浮游植物产生下行控制,长期超负荷的贝类养殖导致浮游植物过度消耗(Cranford et al,2014)。贝类排泄物 N、P 等营养盐和生物沉积改变水体中营养盐结构,对浮游植物产生上行控制(齐占会等,2021),影响浮游植物丰度和群落结构。随着贝类养殖的迅速扩张,贝类养殖海域生态受到更广泛关注。作为主要初级生产力的浮游植物是评估贝类养殖容量的生态模型构建中平衡的关键参数(Zhang et al,2023),对优化海水养殖、合理利用海洋资源尤为重要。
海州湾位于黄海南部,在山东半岛南部和江苏省北部之间,总面积约为 880 km2,总长约为 87 km,属于典型的开敞型海湾(王文海等,1993)。海州湾养殖种类有贝类、紫菜等,贝类是主要养殖品种。据统计,日照岚山区海域贝类养殖面积达到 190.47 km2,年产量达 1.28×105 t,主要养殖贝类包括贻贝、牡蛎、扇贝和文蛤等。近年来,海州湾浮游植物群落结构成为研究热点。李大鹏等(2017)调查 2008—2015 年海州湾海洋牧场浮游植物群落结构,发现受环境因素影响,秋季更适宜浮游植物生长,浮游植物多样性与丰度较高。 2013 年刘长东等(2015)采用典范对应分析(canonical correspondence analysis,CCA)研究了海州湾人工鱼礁区环境因子对浮游植物群落结构的影响,发现人工鱼礁区与对照区浮游植物群落无显著差异。研究 2015 —2018 年海州湾浮游植物群落特征发现,浮游植物多样性呈下降趋势,推测受到紫菜养殖的影响(季相星等,2021)。海州湾浮游植物群落结构调查结果存在差异,针对海州湾贝类养殖区域浮游植物群落结构的调查研究以及贝类养殖对环境和浮游植物群落的影响尚未见报道。本研究于 2023 年对海州湾北部岚山港近岸海域贝类养殖区的浮游植物及环境因子进行季节性调查,分析影响浮游植物结构特征变化的主要因素,旨在为贝类养殖海域生态环境保护和养殖规划及养殖容量评估提供科学依据。
1 材料与方法
1.1 研究区域及站位布设
调查区域为海州湾北部日照市岚山港邻近海域,北部岚山港沿岸有绣针河、龙王河两条入海河流,调查海域水深小于 20 m,调查面积为 134.11 km2。该海域采用筏式养殖方式混养三倍体长牡蛎(简称长牡蛎, Crassostrea gigas)和紫贻贝(Mytilus edulis)。主要在 7 月开始长牡蛎和紫贻贝养殖工作,其中长牡蛎从成贝开始进行育肥,紫贻贝从幼苗开始进行完整的养殖周期,均在次年 1—2 月开始收获上市。在调查期间, 3 月养殖区内未有长牡蛎和紫贻贝养殖,7—12 月有长牡蛎和紫贻贝养殖,养殖区内长牡蛎和紫贻贝平均养殖密度分别为 1 281 t/km2 和 2 275 t/km2。调查期间发现,9 月有长牡蛎死亡,死亡率为 25%。
于 2023 年 3、7、9、10 和 12 月开展 5 个航次调查。根据海域养殖情况设置 11 个调查站位(图1)。其中,S1~S3 站位和 S7~S9 站位分别为一区和二区,为贝类养殖区;S4~S6 站位和 S10、S11 站位分别为航道区和外海区,为非养殖区。
1海州湾调查区域及站位示意图
Fig.1Investigation area and sampling stations of the Haizhou Bay
1.2 样品采集与分析
浮游植物样品使用浅水Ⅲ型浮游生物网自海底部至海面垂直拖拽采集,现场添加 5%甲醛缓冲溶液固定保存,至实验室对浮游植物样本于显微镜下进行种类鉴定和计数,参照《海洋调查规范》(GB/T12763.6-2007)进行浮游植物数据统计。
使用多参数水质检测仪(EXO)对各站位的表底层水温(T)、pH、盐度(S)及溶解氧(DO)等环境因子进行测定。采集表层及底层海水样品,冷冻保存于实验室,用于化学需氧量(COD)分析测定。取 0.45 μm 玻璃纤维滤膜对海水样品进行过滤,取 100 mL 滤液冷冻保存,使用全自动营养盐分析仪测定硅酸盐(SiO3-Si)、亚硝酸盐(NO2-N)、硝酸盐(NO3-N)、氨氮(NH4-N)及磷酸盐(PO4-P)浓度。
1.3 数据处理及分析
反映浮游植物群落物种多样性特征的 Margalef 物种丰富度指数(D)(Margalef et al,1958)、ShannonWiener 多样性指数(H')(Shannon et al,1949)、Pielou 均匀度指数(J')(Pielou,1966)及优势度指数(Y)(Dufrêne et al,1997)的计算公式如下:
D=(S-1)/log2N
(1)
H'=-niNlog2niN
(2)
J'=H'/log2S
(3)
Y=niN×fi
(4)
式中, S 为样品总种数, ni 为第 i 种个体数, N 为所有种个体总数, fi 为第 i 种在各站位中出现的频率。 Y ≥0.02 即为优势种,Y ≥0.1 为绝对优势种。
因浮游植物丰度与环境因子数量级相差较大,对数据进行 lg(X+1)转换。为避免浮游植物物种调查结果的偶然性,以出现频率大于 20%、至少一个站位丰度大于 1%对物种结果进行筛选,在 SPSS 27 中应用典型判别分析(canonical discriminant analysis,CDA)对各区域浮游植物群落结构进行分析。对各区域浮游植物群落结构和环境因子进行去趋势对应分析(detrended correspondence analysis,DCA),结果显示,排序轴最大梯度为 2.7(<3),因此,使用 Canoco 5 对浮游植物群落与环境因子进行冗余分析(redundancy analysis,RDA)(Justić,1995)。
调查海域环境因子取表底层平均值,所有数据在 Excel2016 中进行整理,浮游植物多样性指数在 Primer 6 中完成计算,使用 SPSS 27 对环境因子、浮游植物种类数、丰度以及多样性指数等结果进行季节、区域双因素方差分析(two-way ANOVA),采用 Origin 2022 进行散点绘图,地图与等值线图在 Surfer 27 中进行绘制。
2 结果
2.1 海域环境因子
海州湾不同区域水温、盐度等环境因子季节变化见表1。使用双因素方差分析研究季节、区域及其交互作用对环境因子的影响,结果表明,海州湾调查区域环境因子季节变化均存在极显著差异。调查海域水温最高值出现在 9 月,最低值出现在 12 月。水温的季节与区域交互作用显著(P<0.001),3、7、9 和 10 月一区水温与其他区域存在显著差异。盐度的季节与区域交互作用存在显著差异(P<0.01),调查海域盐度呈现西南向东北方向递增趋势,受内陆河流影响,调查期间一区盐度显著低于其他区域。pH 范围为 7.92~8.30,季节差异性显著(P<0.001),9 月份空间分布上一区与航道区 pH 显著高于二区与外海区(P<0.05),季节与区域交互无显著差异。DO 季节变化与水温呈负相关,全年变化范围为 5.93~11.47 mg/L,季节与区域相互作用显著(P<0.01),9 月一区、二区显著低于非养殖区。调查海域的 COD 季节与区域无显著交互作用(P>0.05),在 7 月显著低于其他月份,空间分布上,一区高于其他区域,但差异性不显著。
各站位营养盐表底层平均值季节变化见图2。根据《海水水质评估标准》(GB 3097–1997)评估结果显示,PO4-P 浓度均属Ⅰ类海水;无机氮(DIN)含量在 7 月 S1 站位水质较差,为Ⅳ类海水,9 月 S2 站位为Ⅲ类海水。双因素方差分析结果表明,各项营养盐浓度季节和区域差异显著(P<0.05)。调查区域营养盐的平均浓度最高值和最低值分别出现在 10 月和 3 月。7 月一区的 SiO3-Si 浓度显著高于其他区域。NO2-N、 NO3-N、NH4-N 和 PO4-P 浓度季节与区域交互作用显著(P<0.05),可能受贝类活动影响,在 7 月和 9 月该 4 项营养盐浓度贝类养殖区(一区和二区)高于非养殖区(航道区和外海区)。
2.2 浮游植物种类组成及优势种的季节变化
调查海域 2023 年 3—12 月共鉴定浮游植物 33 属 69 种,其中硅藻门(Bacillariophyta)27 属 60 种,甲藻门(Dinophyta)5属8种,金藻门(Chrysophyta)1属1种,金藻门为偶见种。双因素方差分析结果表明,浮游植物物种数季节差异性显著(P<0.001),硅藻区域差异性显著(P<0.05),甲藻和金藻种类数区域、季节区域交互作用差异性均不显著(P>0.05)。调查区域浮游植物硅藻、甲藻和金藻种类数季节变化见图3。调查发现, 12 月浮游植物种类数量最多,共检测到 47 种;7 月浮游植物种类数最低。7 月二区硅藻种类数低于航道区,与 3 月未养殖时期相反。赤潮之后,9 月一区、二区硅藻和甲藻物种数高于航道区与外海区。浮游植物各种类丰度占比如图4所示。季节与区域双因素方差分析结果显示,调查期间浮游植物群落丰度占比季节变化显著(P<0.05)。硅藻丰度占比显著高于甲藻和金藻丰度(P<0.01),7 月、9 月一区和航道区硅藻丰度占比显著高于二区和外海区(P<0.01)。
1调查区域环境参数季节与空间变化
Tab.1Seasonal and spatial variations of environmental parameters in the survey area
注:同一列数据不同大写字母表示相同季节不同区域环境变量之间的差异显著(P<0.05),不同小写字母表示相同区域内季节影响下环境变量之间的差异显著(P<0.05)。
Note: Data with different uppercase letters in the same column indicate significant differences (P<0.05) in environmental variables in different regions in the same season, while different lowercase letters indicate significant differences (P<0.05) in environmental variables under seasonal influence in the same region.
调查区域浮游植物优势种及优势种季节与区域变化如图5所示。调查期间共有 14 种优势种,包括硅藻 12 种、甲藻 2 种。不同季节优势种组成具有明显差异,区域之间优势种以及优势度均有差异。调查显示, 7 月各区域第一优势种均为劳氏角毛藻(Chaetoceros lorenzianus),10 月各区域第一优势种均为格氏圆筛藻(Coscinodiscus granii),且优势度最高达 0.7。9 月养殖区有且只有中肋骨条藻(Skeletonema costatum)为绝对优势种,非养殖区绝对优势种有角毛藻(Chaetoceros)、透明辐杆藻(Bacteriastrum hyalinum)等,12 月优势种较多,且优势度较低。
2.3 浮游植物丰度分布季节变化
对浮游植物丰度数值进行 lg(X+1)转换,浮游植物丰度季节与空间分布如图6所示。双因素方差分析结果显示,浮游植物丰度受到季节、区域及其交互作用的显著影响(P<0.05)。调查期间浮游植物丰度范围为(1.40~739.11)×104 cell/m3,10 月浮游植物丰度最高,3 月最低。区域上,一区浮游植物丰度显著高于其他区域(P<0.05)。3、7 和 12 月区域丰度分布特征相似,呈中间区域丰度低,西南和东北区域丰度高,二区低于外海区。9 月和 10 月浮游植物丰度呈现近岸向远岸逐渐递减的趋势,二区浮游植物丰度高于外海区。
2调查区域营养盐浓度的季节与空间变化
Fig.2Seasonal and spatial variations of nutrient concentration in the survey area
2.4 浮游植物群落多样性季节变化
浮游植物群落 Margalef 物种丰富度指数、 Shannon-Wiener 多样性指数和 Pielou 均匀度指数季节分布如图7所示。调查期间,海域浮游植物群落物种丰富度指数、多样性指数和均匀度指数范围分别为 0.72~1.70、1.66~4.00 和 0.38~0.93,浮游植物丰富度、多样性和均匀度指数均在 10 月呈现最低值。根据季节、区域双因素方差分析,浮游植物群落多样性指数均受季节作用显著(P<0.05),多样性指数和均匀度指数具有区域性差异(P<0.05)。一区浮游植物多样性指数多处于较低水平,二区浮游植物多样性和丰富度指数多处于较高水平。9 月养殖区浮游植物群落多样性指数均高于非养殖区。
3调查区域浮游植物种类组成季节与空间变化
Fig.3Seasonal and spatial variations of phytoplankton species composition in the survey area
4调查区域浮游植物丰度组成季节与空间变化
Fig.4Seasonal and spatial variations of phytoplankton abundance composition in the survey area
5调查区域优势种及优势度的季节与区域变化
Fig.5Seasonal and spatial variation of dominant species and dominance in the survey area
○:硅藻;△:甲藻;A1:一区;WA:航道区;A2:二区;OA:外海区。
○: Bacillariophyta; △: Dinophyta; A1: Area1; WA: Waterway area; A2: Area2; OA: Offshore area.
2.5 浮游植物群落典型判别分析
对调查期间不同区域间浮游植物群落结构进行典型判别分析,结果见图8。该分析前两个判别函数分别解释了 56.1%和 29.6%的方差,贡献率达到 85.7%,典型相关系数为 0.769,判别结果较好。结果显示,调查期间一区、航道区与二区浮游植物群落具有不同程度的相似结构,外海区浮游植物结构与其他 3 个区域之间差异明显。一区与邻近的航道区距离较远,但个别月份调查站位距离相近。二区与邻近航道区浮游植物群落结构相似度较高。
6调查区域浮游植物丰度分布季节与空间变化
Fig.6Seasonal and spatial variations in phytoplankton abundance distribution in the survey areas
7调查区域浮游植物群落多样性指数分布季节与空间变化
Fig.7Seasonal and spatial variations in phytoplankton diversity indices in the survey areas
2.6 优势种与环境因子相关性
对各区域主要浮游植物优势种(详见图5)与环境因子包括温度、盐度、pH、DO、COD 和 5 种营养盐进行 RDA,排序结果见图9
对一区的 RDA 结果显示,浮游植物细胞丰度变化主要与 NO2-N 和 pH 相关(P≤0.01),贡献率分别为2 3.5%和 21.9%。NO2-N 与格氏圆筛藻呈正相关,与中肋骨条藻呈负相关。pH 与劳氏角毛藻呈负相关。二区分析结果显示,NO2-N、NO3-N 和 COD 与浮游植物细胞丰度变化具有显著解释性(P<0.05),其中 NO3-N 为主要影响因子,贡献率为 28.90%,与圆筛藻属(Coscinodiscus)和角毛藻属(Chaetoceros)呈正相关。航道区结果显示,温度、NO3-N 与浮游植物细胞丰度变化有极显著解释性(P<0.005),盐度、NO2-N 和 SiO3-Si 有显著解释性(P<0.05)。其中,温度贡献率最大(28.00%),是重要影响因子,与角毛藻属呈正相关,与夜光藻(Noctiluca)和大角角藻(Ceratium macroceros)呈负相关。外海区分析显示,NO2-N 和 pH 与浮游植物细胞丰度变化有显著解释性(P<0.05),NO2-N 为最主要的影响因子,与角毛藻属、格氏圆筛藻呈正相关,与角毛藻呈负相关。COD 环境因子与排序轴无显著相关性。
8调查期间不同区域的浮游植物物种典型判别分析
Fig.8Canonical discriminant analysis of phytoplankton species in different regions during the survey areas
结果显示,优势种与环境因素具有季节差异性。 3 月和 12 月优势种丰度与 pH、DO 环境因子成正相关,7、9 和 10 月与营养盐浓度呈正相关。7 月养殖区站位的优势种丰度与营养盐相关性较大,航道区 S6 站位与营养盐相关性较小,外海区 S10 和 S11 站位主要与温度和盐度相关性较大。
3 讨论
3.1 浮游植物群落结构季节性变化
本研究调查海域硅藻占主导地位,与 2011 年(杨晓改等,2014)海州湾及其邻近海域浮游植物群落结构调查结果相似,相较其他浮游植物调查,鉴定113 种物种结果偏低,除本次调查区域面积较小外,大规模的海水养殖活动也可能是导致浮游植物种类数下降的原因之一(侯兴等,2021)。调查海域丰度与优势种具有季节性变化,浮游植物丰度呈现 10 月最高、3 月最低。近岸受到陆源输入,浮游植物丰度在空间分布上呈近岸高、远岸低,湾内向湾外递增的趋势,与黄海南部和崂山湾浮游植物调查结果相同(Gao et al,2013; 宋秀凯等,2016)。据养殖人员描述,在 9 月中旬调查海域有赤潮发生,9 月底(赤潮结束)采样调查发现,浮游植物丰度变化相对于 7 月发生骤降,且浮游植物群落多样性指数和丰富度指数出现下降。优势种越多,优势度越低,表示该海域浮游植物群落结构稳定,水质状态较好;相反,优势度越高,群落结构稳定性下降(粟丽等,2017; 魏志兵等,2020), 10 月格氏圆筛藻作为第一优势种出现,各区域优势度均高于 0.5,优势种较少,浮游植物多样性指数、丰富度指数和均匀度指数均呈现最低水平,该时期海域浮游植物结构稳定性较差。12 月调查海域优势种较多,优势度较低,浮游植物多样性指数、丰富度指数和均匀度指数均呈较高水平。山东近海赤潮物种多样性研究发现,出现赤潮频率最高的物种有中肋骨条藻和夜光藻等(陈楠生等,2023),在海州湾调查海域中均被作为优势种检出,该海域应注意季节变化过程中,赤潮以及浮游植物群落的改变对海域环境的影响。
3.2 贝类养殖对浮游植物的影响
浮游植物除受到物理、化学因素影响外,还会受到生物群落影响,贝类摄食作为生物群落对浮游植物的影响不可忽略。研究显示,贻贝强大的滤水能力直接影响浮游植物丰度和群落结构(Wong et al,2003)。除滤食作用外,贝类排泄产生的 N,70%以氨氮(NH4 +)形式存在(Cockcroft et al,1990),NH4 + 存在会产生硝化反应,生成 NO2 与 NO3。调查发现,7 月和 9 月贝类养殖区部分站位营养盐浓度高于非养殖区域,局部海域营养盐的浓度变化可能引起浮游植物群落的改变。 CDA 结果显示,一区、二区浮游植物群落结构与外海区相似度较低,推测其浮游植物群落的变化受到贝类活动影响。航道区靠近湾内,水交换较慢,与二区浮游植物群落结构相似,而一区环境因子受地理位置影响较大,仅少数调查站位与二区群落组成相似。
9 月长牡蛎具有部分开口死亡现象,紫贻贝死亡率几乎为 0。有研究表明,浮游植物的减少导致牡蛎能量不足,损伤其对细菌感染的免疫反应(Liu et al,2024)。George 等(2023)研究发现,受到热胁迫时三倍体长牡蛎死亡率高于二倍体长牡蛎。长牡蛎出现死亡可能受到温度与食物的双重因素影响,其具体原因需深入研究。本调查发现,在赤潮之后,长牡蛎部分死亡,导致贝类滤食压力下降,9 月一区、二区浮游植物丰度和多样性指数显著高于其他非养殖区。枸杞岛调查发现,在硅藻赤潮暴发时期,贻贝养殖区浮游植物群落多样性与群落均匀度优于非养殖区,表明贝类生长活动使浮游植物群落结构稳定性更高,抗干扰能力更强(关莹莹等,2022)。根据 9 月浮游植物群落多样性指数,推测浮游植物群落结构仍受到存活长牡蛎和紫贻贝的影响,一定程度上贝类活动能够提高浮游植物群落稳定性。
9浮游植物优势种丰度与环境因子 RDA 排序(实心箭头表示各优势种,空心箭头表示各环境因子)
Fig.9RDA biplot of phytoplankton dominant species and environmental variables (solid arrows represent the dominant species, while hollow arrows indicate environmental factors)
Nitzs:菱形藻;Pinnu:羽纹藻;Cheat:角毛藻;C. lor:劳氏角毛藻;C. pse:拟旋链角毛藻;C. aff:窄隙角毛藻; Cosci:圆筛藻;C. gra:格氏圆筛藻;C. jon:琼氏圆筛藻;B. hya:透明辐杆藻;B. pax:派格棍形藻; S. cos:中肋骨条藻;C. mac:大角角藻;N. sci:夜光藻。
Nitzs: Nitzschia sp.; Pinnu: Pinnularia spp.; Cheat: Chaetoceros sp.; C. lor: Chaetoceros lorenzianus; C. pse: Chaetoceros pseudocurvisetus; C. aff: Chaetoceros affinis; Cosci: Coscinodiscus sp.; C. gra: Coscinodiscus granii; C. jon: Coscinodiscus jonesianus; B. hya: Bacteriastrum hyalinum; B. pax: Bacillaria paxillifera; S. cos: Skeletonema costatum; C. mac: Ceratium macroceros; N. sci: Noctiluca scintillans.
3.3 环境因子对浮游植物群落的影响
RDA 分析结果显示,浮游植物主要与温度、盐度、pH、COD、NO2-N 和 NO3-N 环境因子有关,多种浮游植物与温度呈正相关。海水中营养盐是浮游植物的主要营养来源,其中 N、P 浓度是浮游植物群落变化的关键驱动因素和限制性营养物质(Reynolds et al,2006)。根据营养盐分析(图2),调查海域主要为磷限制,在 PO4-P 浓度较高的 10 月,浮游植物丰度显著增加。NO2-N 与透明辐杆藻、格氏圆筛藻等物种呈正相关,在各项营养盐浓度较高的 10 月,格氏圆筛藻优势度最高,海域浮游植物丰度达到全年最高水平。环境因子对浮游植物群落的影响并非单一性。在寡营养水体中,营养盐浓度会降低水温对浮游植物的促进作用;相反,在富营养水体中,高营养盐浓度可能会增加浮游植物对温度的敏感性(Dory et al,2024)。因此,在航道区温度对优势种丰度具有显著解释性。
4 结论
本调查期间共鉴定出浮游植物硅藻、甲藻和金藻共 69 种,硅藻在种类数和细胞丰度上占主导地位。浮游植物丰度和优势种存在季节性差异,在 10 月达到最高值。赤潮之后,浮游植物丰度与群落多样性均有显著变化。主要浮游植物优势种丰度受 NO2-N、NO3-N、 pH、温度和盐度的影响显著。
养殖贝类的上行控制或下行控制能在一定程度上影响浮游植物群落组成及结构的稳定性和抗干扰性,但其影响程度存在季节和区域差异。环境因子与贝类活动对浮游植物的作用错综复杂,有待进一步研究。
附表1 各站位浮游植物物种数和丰度占比季节变化
Appendix table1 Seasonal variation of phytoplankton species number and relative abundance at each station
续表
1海州湾调查区域及站位示意图
Fig.1Investigation area and sampling stations of the Haizhou Bay
2调查区域营养盐浓度的季节与空间变化
Fig.2Seasonal and spatial variations of nutrient concentration in the survey area
3调查区域浮游植物种类组成季节与空间变化
Fig.3Seasonal and spatial variations of phytoplankton species composition in the survey area
4调查区域浮游植物丰度组成季节与空间变化
Fig.4Seasonal and spatial variations of phytoplankton abundance composition in the survey area
5调查区域优势种及优势度的季节与区域变化
Fig.5Seasonal and spatial variation of dominant species and dominance in the survey area
6调查区域浮游植物丰度分布季节与空间变化
Fig.6Seasonal and spatial variations in phytoplankton abundance distribution in the survey areas
7调查区域浮游植物群落多样性指数分布季节与空间变化
Fig.7Seasonal and spatial variations in phytoplankton diversity indices in the survey areas
8调查期间不同区域的浮游植物物种典型判别分析
Fig.8Canonical discriminant analysis of phytoplankton species in different regions during the survey areas
9浮游植物优势种丰度与环境因子 RDA 排序(实心箭头表示各优势种,空心箭头表示各环境因子)
Fig.9RDA biplot of phytoplankton dominant species and environmental variables (solid arrows represent the dominant species, while hollow arrows indicate environmental factors)
1调查区域环境参数季节与空间变化
Tab.1Seasonal and spatial variations of environmental parameters in the survey area
CHASSOT E, BONHOMMEAU S, DULVY N K, et al. Global marine primary production constrains fisheries catches. Ecology Letters, 2010, 13(4): 495-505
CHEN N S, DING X X, CUI Z M. Advances in the study of red tide species biodiversity around Shandong Peninsula. Oceanologia et Limnologia Sinica, 2023, 54(5): 1258-1273[陈楠生, 丁翔翔, 崔宗梅. 山东近海赤潮物种多样性研究进展. 海洋与湖沼, 2023, 54(5): 1258-1273]
COCKCROFT A C. Nitrogen excretion by the surf zone bivalves Donax serra and D. sordidus. Marine Ecology Progress Series, 1990, 60: 57-65
CRANFORD P J, DUARTE P, ROBINSON S M C, et al. Suspended particulate matter depletion and flow modification inside mussel (Mytilus galloprovincialis) culture rafts in the Ría de Betanzos, Spain. Journal of Experimental Marine Biology and Ecology, 2014, 452: 70-81
DORY F, NAVA V, SPREAFICO M, et al. Interaction between temperature and nutrients: How does the phytoplankton community cope with climate change? Science of the Total Environment, 2024, 906: 167566
DUFRÊNE M, LEGENDRE P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 1997, 67(3): 345-366
GAO Y, JIANG H B. Mechanisms by which marine phytoplankton respond to phosphorus limitation. Marine Environmental Science, 2021, 40(5): 798-804[高玉, 姜海波. 海洋浮游植物对磷限制的响应机制. 海洋环境科学, 2021, 40(5): 798-804]
GAO Y, JIANG Z B, LIU J J, et al. Seasonal variations of net-phytoplankton community structure in the southern Yellow Sea. Journal of Ocean University of China, 2013, 12(4): 557-567
GARGAUD M, AMILS R, QUINTANILLA J C, et al. Encyclopedia of astrobiology. Springer-Verlag Berlin Heidelberg, 2011
GEORGE M N, CATTAU O, MIDDLETON M A, et al. Triploid Pacific oysters exhibit stress response dysregulation and elevated mortality following heatwaves. Global Change Biology, 2023, 29(24): 6969-6987
GUAN Y Y, LIN J, JIAO J P, et al. The characteristics of phytoplankton community of mussel raft farms and surrounding waters under high filtration pressure. Marine Environmental Science, 2022, 41(4): 543-553[关莹莹, 林军, 焦俊鹏, 等. 高滤食压力下贻贝筏式养殖场及周边海域浮游植物群落特征. 海洋环境科学, 2022, 41(4): 543-553]
HOU X, GAO Y P, DU M R, et al. Temporal and spatial variation in phytoplankton community structure and their relationship with environmental factors in Sanggou Bay. Progress in Fishery Sciences, 2021, 42(2): 18-27[侯兴, 高亚平, 杜美荣, 等. 桑沟湾浮游植物群落结构时空变化特征及影响因素. 渔业科学进展, 2021, 42(2): 18-27]
JI X X, JIANG Y, WANG P L. Study on the community structure of phytoplankton in Haizhou Bay and its adjacent waters from 2015 to 2018. Environmental Monitoring and Forewarning, 2021, 13(1): 47-51[季相星, 姜毅, 王普力. 2015—2018年海州湾及邻近海域浮游植物群落结构特征. 环境监控与预警, 2021, 13(1): 47-51]
JUSTIĆ D, RABALAIS N N, TURNER R E, et al. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 1995, 40(3): 339-356
LI D P, ZHANG S, SHI Y Q, et al. Different seasonal changes of phytoplankton community in the marine farming of Haizhou Bay. Ecology and Environmental Sciences, 2017, 26(2): 285-295[李大鹏, 张硕, 石一茜, 等. 海州湾海洋牧场浮游植物群落年际变化特征分析. 生态环境学报, 2017, 26(2): 285-295]
LIU C D, GUO X F, TANG Y L, et al. Phytoplankton community composition and its relationship with environmental factors in the artificial reef area around the Qiansan Islets, Haizhou Bay. Journal of Fishery Sciences of China, 2015, 22(3): 545-555[刘长东, 郭晓峰, 唐衍力, 等. 海州湾前三岛人工鱼礁区浮游植物群落组成及与环境因子的关系. 中国水产科学, 2015, 22(3): 545-555]
LIU Z Q, KONG N, ZHANG Y K, et al. The phytoplankton community affects the energy metabolism and immunomodulation strategy of oyster during breeding seasons. Fish & Shellfish Immunology, 2024, 153: 109819
MARGALEF R. Temporal succession and spatial heterogeneity in natural phytoplankton. In: BUZZATI-TRAVERSO A A, ed. Perspectives marine biology. Berkeley: University of California Press, 1958
PALES ESPINOSA E, CERRATO R M, WIKFORS G H, et al. Modeling food choice in the two suspension-feeding bivalves, Crassostrea virginica and Mytilus edulis. Marine Biology, 2016, 163(2): 40
PENG X, NING X R, SUN J, et al. Responses of phytoplankton growth on nutrient enrichments in the northern South China Sea. Acta Ecologica Sinica, 2006, 26(12): 3959-3968[彭欣, 宁修仁, 孙军, 等. 南海北部浮游植物生长对营养盐的响应. 生态学报, 2006, 26(12): 3959-3968]
PIELOU E C. Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology, 1966, 10(2): 370-383
QI Z H, SHI R J, YU Z H, et al. Review of influences of filter-feeding bivalves aquaculture on planktonic community. South China Fisheries Science, 2021, 17(3): 115-121[齐占会, 史荣君, 于宗赫, 等. 滤食性贝类养殖对浮游生物的影响研究进展. 南方水产科学, 2021, 17(3): 115-121]
QU K M, CHEN B J, YUAN Y X, et al. A preliminary study on influence of N and P on population constituent of planktonic diatoms in seawater. Chinese Journal of Applied Ecology, 2000, 11(3): 445-448[曲克明, 陈碧鹃, 袁有宪, 等. 氮磷营养盐影响海水浮游硅藻种群组成的初步研究. 应用生态学报, 2000, 11(3): 445-448]
REYNOLDS C S. The ecology of phytoplankton. Cambridge, UK: Cambridge University Press, 2006
RHEE G Y, GOTHAM I J. The effect of environmental factors on phytoplankton growth: Temperature and the interactions of temperature with nutrient limitation1. Limnology and Oceanography, 1981, 26(4): 635-648
Shannon C E, WEAVER W. The mathematical theory of communication. Urbana: University of Illinois Press, 1949
SONG X K, TANG X C, CHENG L, et al. Spatio-temporal distribution of net-collected phytoplankton and its relationship with environmental factors in Laoshan bay. Oceanologia et Limnologia Sinica, 2016, 47(6): 1205-1213[宋秀凯, 汤宪春, 程玲, 等. 崂山湾网采浮游植物时空分布特征及其与环境因子关系. 海洋与湖沼, 2016, 47(6): 1205-1213]
SU L, HUANG Z R, CHEN Z Z. Comparative analysis on community characteristics of phytoplankton in different sea areas of Guangdong seacoast. Marine Environmental Science, 2017, 36(1): 61-65[粟丽, 黄梓荣, 陈作志. 广东沿岸不同海域浮游植物群落结构特征的比较分析. 海洋环境科学, 2017, 36(1): 61-65]
WANG W H, XIA D X, GAO X C. Chronicles of the Gulf of China (fourth fascicle). Southern Shandong Peninsula and bays of Jiangsu Province. Beijing: Ocean Press, 1993[王文海, 夏东兴, 高兴辰. 中国海湾志. 第四分册. 山东半岛南部和江苏省海湾. 北京: 海洋出版社, 1993]
WEI Z B, CHAI Y, LUO J B, et al. Seasonal succession and ecological niche analysis of the dominant species of phytoplankton in Changhu Lake. Acta Hydrobiologica Sinica, 2020, 44(3): 612-621[魏志兵, 柴毅, 罗静波, 等. 长湖浮游植物优势种季节演替及生态位分析. 水生生物学报, 2020, 44(3): 612-621]
WONG W H, LEVINTON J S, TWINING B S, et al. Assimilation of micro-and mesozooplankton by Zebra mussels: A demonstration of the food web link between zooplankton and benthic suspension feeders. Limnology and Oceanography, 2003, 48(1): 308-312
XIAO X Y, LIU Y, NIU P L, et al. Effects of culture of Patinopecten yessoensis and Gracilaria lemaneiformis on phytoplankton community structure based on an enclosure experiment. Progress in Fishery Sciences, 2022, 43(1): 66-76[肖雪艳, 刘毅, 牛鹏丽, 等. 基于围隔实验研究虾夷扇贝与龙须菜养殖对浮游植物群落结构的影响. 渔业科学进展, 2022, 43(1): 66-76]
YANG X G, XUE Y, ZAN X X, et al. Community structure of phytoplankton in Haizhou Bay and adjacent waters and its relationships with environmental factors. Chinese Journal of Applied Ecology, 2014, 25(7): 2123-2131[杨晓改, 薛莹, 昝肖肖, 等. 海州湾及其邻近海域浮游植物群落结构及其与环境因子的关系. 应用生态学报, 2014, 25(7): 2123-2131]
ZHANG X P, SONG H J, ZHUANG H F, et al. Calculating the carrying capacity of bivalve mariculture in the Changshan Archipelago (Bohai Strait, China): Ecopath modeling perspective. Journal of Sea Research, 2023, 192: 102367