南极磷虾及其产品质量安全研究进展
doi: 10.3969/j.issn.2095-9869.20250103001
孙慧慧1 , 赵玲1 , 刘志东2 , 曹荣1
1. 中国水产科学研究院黄海水产研究所 山东 青岛 266071
2. 中国水产科学研究院东海水产研究所 上海 200090
基金项目: 国家重点研发计划(2023YFD2401205)和泰山学者工程共同资助
Research Progress on Antarctic Krill Products and Their Quality and Safety
SUN Huihui1 , ZHAO Ling1 , LIU Zhidong2 , CAO Rong1
1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071 , China
2. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090 , China
摘要
南极磷虾(Euphausia superba)作为一种重要的海洋资源,以其丰富的蛋白质、磷脂等生物活性成分广泛应用于健康食品和保健品中,成为众多消费者关注的焦点。然而,随着南极磷虾的开发利用日益加深,其产品安全性问题逐渐浮现,尤其是其中可能存在的砷、氟以及致敏性等潜在风险。本文针对这些问题进行了全面分析,旨在通过加强研究与监管,确保南极磷虾产品的安全性,为消费者提供更加安全、优质的产品,并为产业的可持续发展奠定基础。
Abstract
Antarctic krill (Euphausia superba) and its products have garnered increasing attention as valuable natural resources because of their rich nutritional profile, particularly that of their bioactive compounds such as proteins and phospholipids. These components offer significant health benefits, including antioxidant and anti-inflammatory properties, which have attracted consumers seeking nutritional supplements and functional foods. However, the safety and quality of Antarctic krill products are of critical concern, especially concerning the presence of elements such as arsenic (As) and fluoride (F) and the potential allergenic properties of krill proteins. This review provides a comprehensive analysis of the safety issues surrounding Antarctic krill and its products, addressing key concerns such as the presence of As, F, and allergenic proteins, and strategies to mitigate these risks. One of the primary food safety concerns of Antarctic krill is its potential to accumulate As through its diet of plankton and algae. Various forms of As exist in the natural environment; their toxicity depends on the chemical form. Inorganic arsenic, particularly arsenite (As(Ⅲ)) and arsenate (As(Ⅴ)), is highly toxic, whereas organic arsenic compounds, such as arsenobetaine (AsB), are considered nontoxic or of low toxicity. Studies have shown that Antarctic krill contain As primarily in the less harmful organic forms, with AsB accounting for a significant proportion of the total As content. The levels of inorganic As in Antarctic krill and its products are typically far below the regulatory limits set by food safety standards, such as the national standard of China (GB 2762-2022), which stipulates that the maximum allowable inorganic As content in aquatic products should not exceed 0.50 mg/kg. However, some krill oil samples exceeded the specific standard of 0.1 mg/kg for inorganic As in krill oil, highlighting the need for continued monitoring and control of As levels in these products. Another contaminant of concern in Antarctic krill is F; it naturally accumulates in marine organisms, particularly in the exoskeletons of crustaceans such as krill. Although F is an essential micronutrient at low concentrations, excessive F intake can lead to health issues such as skeletal fluorosis. Research has demonstrated that Antarctic krill and its products, especially krill meal and krill powder, contain elevated F levels because of the exoskeleton’s high F content. The presence of F limits the use of krill products in health supplements, but removing F remains a technical challenge. Current strategies for defluorination include physical and chemical treatments, such as enzymatic hydrolysis, calcium salt precipitation, and filtration. However, further research is required to improve the efficacy of these methods without compromising the nutritional quality of the products. The allergenic potential of Antarctic krill also poses a significant food safety issue. Krill contains proteins (e.g., tropomyosin) that are known allergens that can trigger immune responses in sensitive individuals, particularly those with shellfish allergies. Symptoms of krill protein allergies include skin reactions, respiratory issues, and gastrointestinal discomfort. Although there are no specific treatments for food allergies, several studies have explored methods to reduce the allergenicity of krill proteins. Techniques such as microwave treatment, ultrahigh-pressure processing,protease digestion, and electron beam irradiation have shown promising results in reducing the allergenic potential of tropomyosin and other proteins. For example, microwave and ultra-high-pressure treatments have been shown to reduce shrimp allergenicity, and protease digestion eliminates allergenic protein bands. Moreover, the Maillard reaction, commonly used in food processing, reduces the allergenicity of tropomyosin by altering its secondary structure. These findings offer potential solutions for rendering krill products safer for consumption by individuals with shellfish allergies. Given the growing demand for krill products in the food and nutraceutical markets, ensuring their safety and quality is essential. Future research should focus on understanding the mechanisms involved in As, F, and allergenic protein toxicity, developing more efficient methods for removing these harmful substances. Advances in processing technologies, such as improved defluorination techniques and novel methods for reducing protein allergenicity, are critical for enhancing the safety of krill products. In addition, regulatory frameworks must be strengthened to ensure that krill products meet food safety standards. This includes the use of advanced detection technologies for monitoring contaminants such as As and F and implementing strict labeling requirements for allergens. International cooperation is vital for sharing research findings and regulatory experiences, which can lead to the establishment of unified safety standards for krill products. Public education is another important aspect of ensuring consumer safety. Increasing awareness of the potential risks associated with krill consumption, including heavy metal contamination and allergenicity, can help consumers make informed decisions. Finally, ongoing policy development and establishing a comprehensive quality control system are crucial for protecting consumer health and ensuring the sustainable development of the Antarctic krill industry. In conclusion, Antarctic krill has immense potential as a sustainable and nutritious resource. However, ensuring the safety of its products is paramount. Through continued research, technological advancement, regulatory oversight, and public education, the krill industry can address safety concerns while meeting the growing consumer demand for healthy and functional foods.
南极磷虾(Euphausia superba)是一种独特的浮游甲壳类动物,生活在南极洲周围的寒冷海域中(Murzina et al,2023; Yao et al,2023)。它们以巨大的群集方式存在,是整个南大洋生态系统中重要的能量转移者和物质流动的关键环节(Heyen et al,2023; Johnston et al,2022)。尽管南极磷虾产业在全球渔业中规模相对较小,但在南极生态系统中,其生物量极为丰富且稳定(Cavan et al,2019)。南极磷虾具有超强的繁殖能力,即便每年被各种生物捕食的数量高达 3 亿 t,也能迅速通过新生群体的繁殖和成长得到补充(Mildenberger et al,2023; 王联珠等,2022)。
与常见的经济虾类相似,南极磷虾富含丰富的营养物质,具有较高的营养价值,被誉为“人类未来的动物蛋白库”(Rzymski et al,2021; 杨柳等,2022; Li et al,2020; 李琳等,2024);其氨基酸组成符合 FAO/WHO 推荐的理想蛋白质模式,并且富含二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)等多种多不饱和脂肪酸,同时含有多种人体所需的微量元素(Xie et al,2019; Thøgersen et al,2021; 林瑞环等,2021)。这使得南极磷虾成为一种优质的海洋生物资源,具备广阔的功能食品开发前景和广泛的利用价值(Ericson et al,2019; Yan et al,2023; Hellessey et al,2020)。随着全球对健康食品和天然营养品需求的不断增长,南极磷虾产品因其丰富的营养成分和天然来源,逐渐在国际市场上获得了广泛认可(林柳等,2023; 刘葭萌等,2024; 马德蓉等,2024; Joob et al,2015)。然而,南极磷虾主要以浮游生物和藻类为食,这使其在食物链中存在富集微量元素或重金属的潜在风险,尤其是砷和氟元素的积累,已引起科学界的广泛关注(韩银双等,2022; 李芹等,2021; 郭莹莹等,2018)。因此,本文系统介绍了南极磷虾及其衍生产品的种类,并深入探讨了其潜在的食用安全问题,旨在为南极磷虾产品的开发与安全食用提供科学依据和参考。
1 南极磷虾产品
近年来,得益于南极磷虾深加工关键技术的持续进步,其加工产品日益多样化和高附加值化,成功开发出高品质南极磷虾油及其他产品(图1),主要包括冻南极磷虾、冻熟南极磷虾、南极磷虾肉糜、南极磷虾粉、南极磷虾油以及南极磷虾肽等(王联珠等,2022)。这些产品不仅保留了虾的营养成分,同时也满足了市场对功能性食品和膳食补充剂的需求。
1.1 冻南极磷虾
冻南极磷虾是指在捕捞后迅速进行冷冻处理的南极磷虾产品。这种处理方式旨在尽可能保留虾的新鲜度和营养成分(钱韻芳等,2023; Ni et al,2024)。冻南极磷虾含有丰富的蛋白质,非常适合运动员和需要增加蛋白质摄入的人群。它通常用于各类料理中,如炒菜、烤虾、海鲜拼盘等,或者可以作为原料加工成南极磷虾干、罐头以及虾酱等食品。其冷冻状态保证了长期保存的能力,广泛应用于零售和餐饮业。
1南极磷虾产品及其潜在的食品安全危害因素
Fig.1Antarctic krill products and their potential food safety hazard factors
1.2 冻熟南极磷虾
冻熟南极磷虾是在捕捞后先进行烹煮处理,然后迅速冷冻,以保持食品安全和口感。这种处理方式保留了虾肉的营养成分,如蛋白质和矿物质,同时确保了消费者在食用时的便捷性。冻熟南极磷虾与冻南极磷虾相似,但由于经过烹煮,其蛋白质更易消化吸收。此外,烹煮过程中部分水溶性维生素(如维生素 B 族)可能会有所损失(Lin et al,2022)。冻熟南极磷虾不仅可以作为原料继续加工成虾干、罐头外,还可以解冻后直接烹饪食用,主要用于制作速冻食品、即食海鲜产品和海鲜沙拉,因其便捷性而成为家庭烹饪和快餐业的理想选择。
1.3 南极磷虾肉糜
南极磷虾肉糜是将虾肉剁碎后形成的产品,通常不添加其他成分。这种形式保留了虾肉的纤维结构和营养成分,如高质量的蛋白质、矿物质和维生素。肉糜状的南极磷虾易于消化,是提供高质量蛋白质的理想来源,特别适合作为婴幼儿辅食(Zhang et al,2018; 刁华玉等,2022; Chen et al,2024)。南极磷虾肉糜也可以进一步加工成为各类虾肉制品,如虾丸、虾饺和虾肉汉堡等。这些制品不仅可以作为主食,也适合作为小吃或快餐的主要组成部分。
1.4 南极磷虾油
南极磷虾油是从南极磷虾体内提取的油脂,富含 Omega-3 脂肪酸、虾青素和其他脂溶性营养成分。 Omega-3 脂肪酸对心血管健康、关节健康和脑功能有益,而虾青素则有助于调节胆固醇水平、支持眼睛健康和皮肤保护(胡子聪等,2024; Attri et al,2025; Alkhedhairi et al,2022)。南极磷虾油主要作为营养补充剂供人类和宠物消费。通常以软胶囊或液体形式出售,方便摄入。
1.5 南极磷虾蛋白肽/粉
南极磷虾蛋白肽/粉是将南极磷虾身体中的蛋白质提取并加工成粉末形式的产品。其富含高品质的蛋白质,具有优良的氨基酸组合和生物利用度,利于身体组织修复和生长(Fernando et al,2020; 李福后等,2023),主要用于制造高蛋白食品,如蛋白棒和蛋白粉饮料等。适合运动员、健身爱好者以及需要增加蛋白质摄入的人群。
总之,南极磷虾的不同产品形式不仅满足了食品加工和餐饮需求,还在营养补充和健康管理领域发挥着重要作用,能够提供多种营养成分和功能特性,适合不同人群的需求和健康目标。因此,南极磷虾产品的市场前景广阔。随着消费者对健康食品和营养补充剂需求的增加,全球对南极磷虾产品的需求也在不断上升。未来,随着技术的进步和市场的拓展,南极磷虾产品将在全球范围内占据更加重要的位置。
2 南极磷虾及其产品的质量安全
随着全球消费需求的不断增长,南极磷虾及其产品的食品安全问题已引起日益广泛的关注。由于南极磷虾独特的生长环境和生物学特性,其产品在采捕、加工、储存和运输过程中可能面临多种物理、化学和生物危害。物理危害主要包括异物污染,如金属颗粒、塑料污染以及其他外源性物质,这些污染物可能在磷虾产品的各个环节中产生。然而,尽管物理危害在实际生产过程中存在一定风险,但相较于化学和生物危害,其关注度相对较低。因此,本文主要从化学危害 [如砷(As)、氟(F)等污染物]和生物危害(如过敏原及微生物污染)两方面进行讨论。
2.1 南极磷虾及其产品中的化学危害
2.1.1 南极磷虾及其产品中的砷
南极磷虾主要以浮游生物和藻类为食,具有在食物链中富集重金属的特性。因此,南极磷虾及其相关产品的食用安全性备受关注。南极磷虾体内的砷主要来源于其摄食的浮游生物,在后续加工过程中,砷会不同程度地迁移到南极磷虾产品中,这限制了其在保健品和膳食补充剂等领域的应用(王联珠等,2022)。因此,关注并有效解决南极磷虾及其产品中的砷含量问题尤为重要。
2.1.1.1 南极磷虾中砷的赋存形态及含量
自然界中的砷存在多种形态,其毒性与具体形态密切相关。无机砷毒性较强,尤其是亚砷酸盐[As(Ⅲ)],其毒性高于砷酸盐[As(Ⅴ)]。相对而言,有机砷如砷甜菜碱(Arsenobetaine,AsB)等被认为是低毒或无毒的,通常不会对人体产生显著的健康风险。南极磷虾中的砷同时含有无机态和有机态,但研究表明其主要以低毒性的有机砷形式存在,尤其是 AsB 的比例较高,而无机砷含量则非常低。郭莹莹等(2018)研究了南极磷虾及其产品中总砷及无机砷含量,结果显示南极磷虾整虾、虾肉、虾粉和虾油(原液)及虾油胶囊(内容物)中的总砷含量分别为 0.031~0.270 mg/kg(湿质量计)、 0.077~0.086 mg/kg(湿质量计)、0.75~1.50 mg/kg(干质量计)、1.1~6.5 mg/kg(干质量计)、1.2~1.8 mg/kg(干质量计);无机砷含量依次为小于 0.050 mg/kg、小于 0.050 mg/kg、小于 0.050~0.11 mg/kg、小于 0.050~0.14 mg/kg、小于 0.050~0.082 mg/kg。根据《食品安全国家标准食品中污染物限量》(GB 2762-2022),水产动物及其制品中的无机砷含量不得超过 0.50 mg/kg,南极磷虾及其制品中的无机砷含量通常远低于这一限值,表明其食用安全性较高。然而, GB 2762-2022 中规定磷虾油及其制品中无机砷的含量应小于 0.1 mg/kg。在对 48 种不同磷虾油样品的检测中,有 2 个样品的无机砷含量超过了这一标准,因此,应重视并加强对南极磷虾油产品中无机砷的检测,以确保其食用的安全性。
2.1.1.2 南极磷虾及其制品中砷的检测方法
依据新修订的 GB 5009.11-2024《食品安全国家标准食品中总砷及无机砷的测定》,南极磷虾及其制品中总砷含量的检测方法主要包括氢化物发生原子荧光光谱法(HG-AFS)、电感耦合等离子体质谱法(ICP-MS)和石墨炉原子吸收光谱法(GF-AAS)。这 3 种方法在检测原理、灵敏度和应用范围上有所不同,适用于不同类型的分析需求。
HG-AFS 法通过氢化物发生器将样品中的砷转化为砷化氢,利用原子荧光光谱进行检测,检出限为 0.01 mg/kg,定量限为 0.04 mg/kg,具有较高的选择性和灵敏度。此方法特别适合分析南极磷虾及其制品中的低浓度砷,能够准确区分无机砷和有机砷的含量。
ICP-MS 法将样品消解后使用质谱仪对砷离子进行检测,检出限为 0.002 mg/kg,定量限为 0.005 mg/kg,实现高灵敏度的定量分析。此方法适用于需要精确测定南极磷虾中砷含量的情况,尤其适合以研究和监管为目的的检测。
GF-AAS 法是新修订的国家标准中替代了银盐法的新方法,该方法利用石墨炉对消解后的样品原子化检测,主要用于检测除乳粉、调制乳粉、油脂及其制品、调味品和特殊膳食食品外的食品中总砷,检出限为 0.03 mg/kg,定量限为 0.09 mg/kg。新标准中无机砷的检测方法没有更改,仍采用了旧标准中的液相色谱–电感耦合等离子质谱法(LC-ICP/MS)和液相色谱–原子荧光光谱法(LC-AFS)两种。其中,LC-ICP/MS 在水产动物中的检出限为 0.02 mg/kg,定量限为 0.05 mg/kg;而 LC-AFS 的检出限为 0.006 mg/kg,定量限为 0.02 mg/kg,这两种方法均适用于水产品及其制品中无机砷的测定。
这些方法结合使用,可为南极磷虾及其制品中的砷含量检测提供高效、可靠的技术支持,从而有效保障南极磷虾及其制品的砷含量在安全范围内,确保其在市场上的安全性和消费者的健康。
2.1.1.3 南极磷虾制品中砷的脱除方法
目前,针对南极磷虾产品中砷的脱除方法研究较少,主要使用不同吸附剂进行脱砷处理。朱子豪等(2019)探讨了不同活性沸石的吸附能力,发现钠型沸石处理后的南极磷虾油品质最佳,透明度高且色泽浅。在另一项研究中,椰壳活性炭和水被用作脱除剂,有机砷的脱除率在最优条件下可达 68.68%(方素琼等,2024)。这些方法各有特点,其应用不仅提高了南极磷虾产品的安全性,也为其在食品和保健品领域的应用提供了更广阔的空间。选择合适的方法取决于具体的生产需求、成本考虑以及产品的最终用途。每种方法的流程包括原料准备、处理步骤以及后续的分离和纯化过程,以确保最终产品的安全性和质量。
2.1.2 南极磷虾及其产品中的氟
氟作为非金属性最强的卤族元素,具有强氧化性和极小的原子半径,广泛存在于自然界中。作为一种双阈值性质的微量元素,氟主要分布于人体的骨骼和牙齿中,有助于其健康。然而,过量摄入可能引发氟中毒,症状包括食欲不振、疲劳和头晕等(杨瑞等,2022)。不同于砷,南极磷虾体内的氟主要来自海水,其氟含量可达到海水中的 3 000 倍(王联珠等,2022)。氟在磷虾壳体内通过离子交换和吸附方式积累,主要由外向内迁移,但不会转移到软组织中。因此,无论是作为动物饲料还是人类食物,南极磷虾中氟的生物毒性及其在动物和人体中的蓄积均不可忽视(沈晓盛等,2013; 曹明秀,2016; 李佳欢等,2023)。
2.1.2.1 南极磷虾中氟的赋存形态及含量
南极磷虾中的氟以多种形态存在,包括水溶态、可交换态、氧化态、有机束缚态和残余态(郭帆等,2018; Peng et al,2019)。水溶态氟以离子或络合物形式存在,迁移性和转化性强,易被生物体吸收;可交换态氟通过静电吸附于颗粒或有机质上,迁移性较强;氧化态氟与金属氧化物结合,生物有效性低;残余态氟则存在于矿物颗粒晶格中,生物利用率极低(李佳欢等,2023)。南极磷虾中的氧化态、有机束缚态和残余态氟占总氟的 60%~70%,不易被人体吸收;水溶态氟和可交换态氟占总氟的 30%~40%,较易被吸收(侯钟令,2020)。南极磷虾的氟含量显著高于其他海产品,甚至高达千倍以上,这主要是因为其壳体能够富集海水中的氟。研究显示,南极磷虾整虾的氟含量在 1 100~2400 mg/kg(干基)之间(刘柯欣等,2022)。我国曾规定鱼类氟的限量为 2.0 mg/kg,但随着研究的深入,在 GB 2762-2017《食品安全国家标准食品中污染物限量》中已取消氟的限量规定,新修订的国家标准中延续了这一政策。南极磷虾不同部位的氟含量差异明显,虾壳中氟含量最高,而虾肉中最低。具体而言,整虾氟含量为(1 650±157)mg/kg,头胸部为(2 042±201)mg/kg,虾壳为(2 687±199)mg/kg,虾肉为(325±46)mg/kg(刘云姣等,2018)。
2.1.2.2 南极磷虾及其制品中氟的检测方法
食品中氟的检测方法主要包括扩散–氟试剂比色法、灰化蒸馏–氟试剂比色法、氟离子选择电极法和离子色谱法。(1)扩散–氟试剂比色法利用氟化物在扩散盒内与酸反应生成氟化氢气体,再与氟试剂反应生成蓝色络合物,通过颜色深浅判断氟浓度。(2)灰化蒸馏 –氟试剂比色法是将样品中的氟经过高温灰化后,在酸性条件下蒸馏分离,与氟试剂反应生成蓝色络合物,通过与标准对比测定氟含量。(3)氟离子选择电极法是基于氟离子选择电极的原理,利用氟离子选择电极上的氟化镧单晶膜对溶液中的氟离子有选择性的“穿透性”,通过测量电极电位来确定溶液中的氟离子浓度。(4)离子色谱法主要适用于测定溶液中无机态氟,使用阴离子交换柱分离氟离子,并用电导检测器测定氟含量。这些方法各具特点,适用于不同的检测需求和应用场景,选择合适的方法需综合考虑样品性质、检测灵敏度要求以及操作复杂性等因素。
2.1.2.3 南极磷虾制品中氟的脱除方法
根据世界卫生组织的建议,成年人每日氟摄入量为 2~4 mg,而中国居民膳食营养素参考摄入量(2023 版)中推荐的适宜摄入量为 1.5 mg/d,最高摄入量为 3.5 mg/d。由于南极磷虾的高氟含量,可能导致其产品中的氟含量超标。捕获后迅速脱壳,可以显著降低虾肉中的氟含量。研究表明,食用整虾的风险较大,而脱壳虾肉则风险较小。此外,郭帆等(2016)采用钙盐沉淀法(包括乳酸钙、氯化钙、氧化钙)对南极磷虾的酶解液进行氟脱除,其中乳酸钙效果最佳,可去除 90%以上的氟,但可能影响产品风味。方兵等(2018)采用超声辅助方法,利用 6 种不同的钙盐对南极磷虾肉中的氟进行脱除,发现柠檬酸钙、氯化钙和乳酸钙的效果最佳,是理想的脱氟剂。此外,研究还报道了一种新的逆流萃取法对去脂磷虾粉进行脱氟处理,经处理后,成品含氟量显著降低至小于 5 mg/kg,脱氟效率达 99.7%。该方法工艺简单、经济、脱氟效率高、耗水量少,已成功应用于食品中试基地,为磷虾行业获得安全脱脂南极磷虾粉提供了有益支持(Yu et al,2020)。
2.2 南极磷虾及其产品中的生物危害
南极磷虾作为一种海洋食品,其致敏性主要源于其特有的蛋白质及其他生物成分(Costa et al,2022; 王学丽,2019)。这些成分可能引发人体免疫系统的异常反应,导致过敏,尤其在对甲壳类动物蛋白过敏的人群中较为普遍(Zhao et al,2023; 刘柯欣等,2022)。南极磷虾中主要的致敏蛋白是原肌球蛋白及其他可能引发过敏反应的成分(Cheng et al,2022; Motoyama et al,2008),这可能导致皮肤过敏、呼吸道症状和消化系统不适等反应(Faisal et al,2019; 马德蓉,2022)。
目前还没有针对食物过敏的特异性治疗方法,避免过敏原是预防的有效手段(Zuidmeer-Jongejan et al,2012)。尽管近年来针对水产品致敏性的研究逐渐增多,但有关减弱南极磷虾致敏性的研究有限。董晓颖等(2010)研究表明,微波和超高压处理可以有效降低虾的致敏性,而蛋白酶处理则能消除过敏蛋白的特征条带,使其丧失致敏性。Guan 等(2018)通过电子束辐照改变原肌球蛋白的结构,发现当辐照剂量为 7 kGy 时,其免疫球蛋白 G 的结合能力下降了 59%。此外,美拉德反应是一种在食品加工过程中极为重要的反应,因为它对食品的风味、颜色、质地和营养价值等品质有重要影响(Bu et al,2009)。Fu 等(2019)指出,利用核糖、低聚半乳糖和壳寡糖进行美拉德反应能够使中国对虾(Penaeus chinensis)原肌球蛋白的致敏性降低 60%。进一步的分析显示,该方法是通过诱导原肌球蛋白的 α-螺旋向 β-折叠转换从而降低了其致敏性。
3 总结与展望
南极磷虾富含丰富的虾青素、磷脂等活性物质,具有显著的健康价值,尤其在增强免疫力、抗氧化和促进心血管健康等方面的潜力已受到广泛关注。随着全球消费者对健康和营养品需求的增长,南极磷虾作为一种天然营养资源,正逐步成为市场青睐的功能性食品,其相关制品展现出广阔的市场前景和巨大经济潜力。因此,确保南极磷虾及其产品的质量安全,特别是降低潜在风险,已成为亟待解决的问题。
未来的研究可从以下几个方向展开:(1)机制研究:深入探索南极磷虾中砷、氟及致敏蛋白的作用机制,评估其对不同人群(如孕妇、儿童及过敏体质人群)的健康影响。通过动物实验、体外实验和临床研究,可以系统获取相关数据,为安全性评估提供坚实的理论基础。(2)改进技术:开发和优化现有技术,以更高效地去除南极磷虾中的有害成分,尤其是砷和氟。研究物理和化学脱氟技术(如膜过滤和高效吸附法)及酶解法,提高去除率的同时,尽可能保持其营养成分。探索新型钙盐沉淀剂和酶解技术来去除或降低致敏蛋白含量,减少过敏反应的风险,并提升产品的安全性。(3)增强监管:建立并完善南极磷虾及其产品的监管体系,重点加强对砷、氟及致敏蛋白等潜在风险成分的质量检测。引入先进的检测技术(如高效液相色谱法、质谱分析等)提高检测的准确性和效率,并推动监管标准的国际化和统一化。(4)国际合作:加强国际食品安全合作,特别是在南极磷虾的安全性研究领域。通过共享研究成果、交流监管经验、建立国际标准,制定全球统一的安全标准和监管措施,为各国市场提供更加规范和安全的产品。(5)消费者教育与宣传:提升消费者对南极磷虾产品安全性的认知,特别是在过敏反应的预防方面。通过媒体宣传和公共教育活动普及南极磷虾产品的安全信息,帮助消费者识别潜在的健康风险和科学食用方法。对于可能含有致敏成分的磷虾产品,明确标识过敏原,帮助消费者做出更安全的选择。(6)政策制定与标准更新:根据最新的研究成果及时更新相关政策与标准,建立完善的质量标准体系,确保市场上销售的南极磷虾产品符合食品安全要求,并提供更好的健康保障。政策应灵活应对科技进步与市场需求的变化,不断完善监管机制,推动产业的可持续发展。通过这些研究方向和措施,可以有效提升南极磷虾产品的食品安全性,确保其在各个领域的健康效益,同时促进南极磷虾产业的健康、可持续发展。这不仅对提升消费者的信任和市场竞争力至关重要,也将为全球食品安全标准的统一做出贡献。
1南极磷虾产品及其潜在的食品安全危害因素
Fig.1Antarctic krill products and their potential food safety hazard factors
ALKHEDHAIRI S A, ABA ALKHAYL F F, ISMAIL A D, et al. The effect of krill oil supplementation on skeletal muscle function and size in older adults: A randomised controlled trial. Clinical Nutrition, 2022, 41(6): 1228-1235
ATTRI N, ARORA D, SAINI R, et al. Health promoting benefits of krill oil: Mechanisms, bioactive combinations, and advanced encapsulation technologies. Food Science and Biotechnology, 2025, 34(6): 1285-1308
BU G H, LU J, ZHENG Z, et al. Influence of Maillard reaction conditions on the antigenicity of bovine α-lactalbumin using response surface methodology. Journal of the Science of Food and Agriculture, 2009, 89(14): 2428-2434
CAO M X. Fluoride migration and form transformation during the storage of Antarctic krill and its toxicity study fed by mice. Master’s Thesis of Shanghai Ocean University, 2016[曹明秀. 南极磷虾中氟在贮藏过程中的迁移、转化规律及其生物学毒性评价. 上海海洋大学硕士研究生学位论文, 2016]
CAVAN E L, BELCHER A, ATKINSON A, et al. The importance of Antarctic krill in biogeochemical cycles. Nature Communications, 2019, 10(1): 4742
CHEN J W, HU Y D, GAO P, et al. Effect of κ-carrageenan on the physicochemical and structural characteristics of ready-to-eat Antarctic krill surimi gel. International Journal of Food Science & Technology, 2024, 59(6): 3711-3722
CHENG J H, WANG H F, SUN D W. An overview of tropomyosin as an important seafood allergen: Structure, cross-reactivity, epitopes, allergenicity, and processing modifications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(1): 127-147
COSTA J, VILLA C, VERHOECKX K, et al. Are physicochemical properties shaping the allergenic potency of animal allergens? Clinical Reviews in Allergy & Immunology, 2022, 62(1): 1-36
DIAO H Y, LIN S Y, LIANG R, et al. Moisture migration and microstructure changes of Antarctic krill meat during multiple freeze-thaw cycles. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 242-250[刁华玉, 林松毅, 梁瑞, 等. 南极磷虾肉冻融循环过程水分的迁移及微观结构变化. 中国食品学报, 2022, 22(6): 242-250]
DONG X Y, GAO M X, PAN J R, et al. Effects of different treatments on molecular weight and antigenicity of shrimp allergenic protein. Journal of Nuclear Agricultural Sciences, 2010, 24(3): 548-554[董晓颖, 高美须, 潘家荣, 等. 不同处理方法对虾过敏蛋白分子量及抗原性的影响. 核农学报, 2010, 24(3): 548-554]
ERICSON J A, HELLESSEY N, NICHOLS P D, et al. New insights into the seasonal diet of Antarctic krill using triacylglycerol and phospholipid fatty acids, and sterol composition. Polar Biology, 2019, 42(11): 1985-1996
FAISAL M, VASILJEVIC T, DONKOR O N. A review on methodologies for extraction, identification and quantification of allergenic proteins in prawns. Food Research International, 2019, 121: 307-318
FANG B, WANG Z H, SHI W Z, et al. Study on the removal of various morphological fluorine in Antarctic krill meat by calcium salt. Modern Food Science and Technology, 2018, 34(8): 64-68, 212[方兵, 汪之和, 施文正, 等. 钙盐对南极磷虾肉中各形态氟的脱除作用. 现代食品科技, 2018, 34(8): 64-68, 212]
FANG S Q, ZHU D Q, LIN J H, et al. Removal process optimization of organic arsenic from krill oil. Food Research and Development, 2024, 45(9): 111-117[方素琼, 朱东奇, 林锦淮, 等. 磷虾油中有机砷脱除工艺优化. 食品研究与开发, 2024, 45(9): 111-117]
FERNANDO I P S, PARK S Y, HAN E J, et al. Isolation of an antioxidant peptide from krill protein hydrolysates as a novel agent with potential hepatoprotective effects. Journal of Functional Foods, 2020, 67: 103889
FU L L, WANG C, WANG J B, et al. Maillard reaction with ribose, galacto-oligosaccharide or chitosan-oligosaccharide reduced the allergenicity of shrimp tropomyosin by inducing conformational changes. Food Chemistry, 2019, 274: 789-795
GUAN A Y, MEI K L, LV M C, et al. The effect of electron beam irradiation on IgG binding capacity and conformation of tropomyosin in shrimp. Food Chemistry, 2018, 264: 250-254
GUO F, SHI W Z, WANG Z H. Study on fluoride removal of Antarctic krill hydrolysate. Science and Technology of Food Industry, 2016, 37(9): 245-249[郭帆, 施文正, 汪之和. 南极磷虾酶解液脱氟工艺的研究. 食品工业科技, 2016, 37(9): 245-249]
GUO F, WANG Z H, SHI W Z, et al. Distribution characteristics and speciation of fluorine in different parts of Antarctic krill. Food Science, 2018, 39(8): 237-242[郭帆, 汪之和, 施文正, 等. 南极磷虾不同部位氟形态及其分布特征. 食品科学, 2018, 39(8): 237-242]
GUO Y Y, WANG L Z, ZHU W J, et al. Arsenic content analysis and safety evaluation of Antarctic krill (Euphausia superba) and its products. Food Science, 2018, 39(19): 182-187[郭莹莹, 王联珠, 朱文嘉, 等. 南极磷虾及其产品中砷含量分析及安全性评价. 食品科学, 2018, 39(19): 182-187]
HAN Y S, DENG H L, LIU Z D, et al. Advancement of potential hazard factor analysis and risk assessment of Antarctic krill powder. Chinese Journal of Animal Nutrition, 2022, 34(2): 750-757[韩银双, 邓红亮, 刘志东, 等. 南极磷虾粉潜在危害因子分析及风险评价进展. 动物营养学报, 2022, 34(2): 750-757]
HELLESSEY N, JOHNSON R, ERICSON J A, et al. Antarctic krill lipid and fatty acid content variability is associated to satellite derived chlorophyll a and sea surface temperatures. Scientific Reports, 2020, 10(1): 6060
HEYEN S, SCHNEIDER V, HÜPPE L, et al. Variations of intact phospholipid compositions in the digestive system of Antarctic krill, Euphausia superba, between summer and autumn. PLoS One, 2023, 18(12): e0295677
HOU Z L. Forms and toxicity of fluoride from Antarctic krill. Master’s Thesis of Shanghai Ocean University, 2020[侯钟令. 南极磷虾中氟的赋存形态和毒性研究. 上海海洋大学硕士研究生学位论文, 2020]
HU Z C, YANG K J, FANG C L. Research progress on nutritional properties of Antarctic krill oil and its improvement on osteoporosis. China Oils and Fats, 2024, 49(4): 32-39[胡子聪, 杨可君, 房翠兰. 南极磷虾油的营养特性及其改善骨质疏松症的研究进展. 中国油脂, 2024, 49(4): 32-39]
JOHNSTON N M, MURPHY E J, ATKINSON A, et al. Status, change, and futures of zooplankton in the southern ocean. Frontiers in Ecology and Evolution, 2022, 9: 624692
JOOB B, WIWANITKIT V. Krill oil: New nutraceuticals. Journal of Coastal Life Medicine, 2015, 3(8): 669-670
LI F H, HUANG Y L, LIU X F, et al. Optimization of a nanofiltration desalination process for Antarctic krill peptides using orthogonal tests. Progress in Fishery Sciences, 2023, 44(1): 228-235[李福后, 黄岳磊, 刘小芳, 等. 正交实验优化南极磷虾蛋白肽的纳滤脱盐工艺. 渔业科学进展, 2023, 44(1): 228-235]
LI J H, XIE C J, KANG R N, et al. Accumulation of fluorine in Antarctic krill in various fugitive forms and damage to mouse liver. Farm Products Processing, 2023(7): 1-7, 13[李佳欢, 谢昌健, 康瑞宁, 等. 南极磷虾中各赋存形态氟在大鼠肝的蓄积及对肝损伤研究. 农产品加工, 2023(7): 1-7, 13]
LI L, WANG C C, JIANG S, et al. The absorption kinetics of Antarctic krill oil phospholipid liposome in blood and the digestive tract of healthy mice by single gavage. Food Science and Human Wellness, 2020, 9(1): 88-94
LI L, ZHAO L, SUN H H, et al. Inhibition of melanosis in Antarctic krill based on sodium metabisulfite treatment. Progress in Fishery Sciences, 2024, 45(6): 212-219[李琳, 赵玲, 孙慧慧, 等. 基于焦亚硫酸钠处理的南极磷虾防黑保鲜工艺研究. 渔业科学进展, 2024, 45(6): 212-219]
LI Q, LIU H. Research progress on the influence factors of fluorine migration in Antarctic krill. Chinese Fishery Quality and Standards, 2021, 11(1): 55-60[李芹, 刘欢. 南极磷虾中氟含量迁移影响因素研究进展. 中国渔业质量与标准, 2021, 11(1): 55-60]
LIN J X, ZHANG Y Y, LI Y W, et al. Improving the texture properties and protein thermal stability of Antarctic krill (Euphausia superba) by L-lysinemarination. Journal of the Science of Food and Agriculture, 2022, 102(9): 3916-3924
LIN L, CAO Z H, TAO N P, et al. Research progress in oxidation stability of Antarctic krill (Euphausia superba) oil and review of methods for its control. Food Science, 2023, 44(15): 310-320[林柳, 曹振海, 陶宁萍, 等. 南极磷虾油氧化稳定性及调控方法研究进展. 食品科学, 2023, 44(15): 310-320]
LIN R H, ZHAO L, CAO R, et al. Comparative analysis of the biochemical properties of phenoloxidase isolated from Euphausia superba and Trachypenaeus curvirostris. Progress in Fishery Sciences, 2021, 42(2): 124-131[林瑞环, 赵玲, 曹荣, 等. 南极磷虾与鹰爪糙对虾酚氧化酶生化性质对比分析. 渔业科学进展, 2021, 42(2): 124-131]
LIU J M, ZHAO Q C, ZHANG B B, et al. Research progress of the Antarctic krill seasoning. Journal of Food Safety & Quality, 2024, 15(5): 105-112[刘葭萌, 赵前程, 张忭忭, 等. 南极磷虾基调味料研究进展. 食品安全质量检测学报, 2024, 15(5): 105-112]
LIU K X, LIN S Y, HU S J, et al. Advances in our knowledge of the nutritional and functional properties and safety of Antarctic krill proteins. Food Science, 2022, 43(7): 263-272[刘柯欣, 林松毅, 胡胜杰, 等. 南极磷虾蛋白营养与功能特性及食用安全性研究进展. 食品科学, 2022, 43(7): 263-272]
LIU Y J, ZHANG H Y, SHEN X S. Research progress of fluorine in Antarctic krill. Journal of Zhejiang Ocean University (Natural Science), 2018, 37(4): 356-361[刘云姣, 张海燕, 沈晓盛. 南极磷虾中氟的研究进展. 浙江海洋大学学报(自然科学版), 2018, 37(4): 356-361]
MA D R, LIN N, ZHANG J J, et al. Progress in processing and utilization of frozen Antarctic krill. Marine Fisheries, 2024, 46(1): 110-118[马德蓉, 林娜, 张俊杰, 等. 冷冻南极磷虾加工利用研究进展. 海洋渔业, 2024, 46(1): 110-118]
MA D R. The identification and property studies of Antarctic krill (Euphausia superba) allergens. Master’s Thesis of Jiangsu Ocean University, 2022[马德蓉. 南极磷虾过敏原的发掘及过敏性研究. 江苏海洋大学硕士研究生研究论文, 2022]
MILDENBERGER J, BRUHEIM I, SOLIBAKKE P, et al. Development of a protein concentrate for human consumption by direct enzymatic hydrolysis of Antarctic krill (Euphausia superba). LWT, 2023, 173: 114254
MOTOYAMA K, SUMA Y, ISHIZAKI S, et al. Identification of tropomyosins as major allergens in Antarctic krill and Mantis shrimp and their amino acid sequence characteristics. Marine Biotechnology, 2008, 10(6): 709-718
MURZINA S A, VORONIN V P, BITIUTSKII D G, et al. Comparative analysis of the fatty acid profiles of Antarctic krill (Euphausia superba Dana, 1850) in the Atlantic sector of the southern ocean: Certain fatty acids reflect the oceanographic and trophic conditions of the habitat. Journal of Marine Science and Engineering, 2023, 11(10): 1912
NI L, JIANG C J, GUO Q Y, et al. Metabolomics analysis of physicochemical properties associated with freshness degradation in frozen Antarctic krill (Euphausia superba). Food Research International, 2024, 183: 114190
PENG Y H, JI W, ZHANG D, et al. Composition and content analysis of fluoride in inorganic salts of the integument of Antarctic krill (Euphausia superba). Scientific Reports, 2019, 9(1): 7853
QIAN Y F, YU J Y, WANG M C, et al. Effect of ultrasound-assisted thawing on the quality of Euphausia superba and its changes during cold storage. Food Science, 2023, 44(1): 63-69[钱韻芳, 郁佳怡, 汪敏晨, 等. 超声波辅助解冻对南极磷虾品质及其后续冷藏特性的影响. 食品科学, 2023, 44(1): 63-69]
RZYMSKI P, KULUS M, JANKOWSKI M, et al. COVID-19 pandemic is a call to search for alternative protein sources as food and feed: A review of possibilities. Nutrients, 2021, 13(1): 150
SHEN X S, LI Y L, ZHANG H Y, et al. Distribution and relationship of flouride and mineral elements in Antarctic krill. Modern Food Science and Technology, 2013, 29(9): 2279-2282, 2119[沈晓盛, 李彦霖, 张海燕, 等. 南极磷虾中氟与矿质元素的分布特征及其相关性分析. 现代食品科技, 2013, 29(9): 2279-2282, 2119]
THØGERSEN R, BERTRAM H C, VANGSOE M T, et al. Krill protein hydrolysate provides high absorption rate for all essential amino acids-a randomized control cross-over trial. Nutrients, 2021, 13(9): 3187
WANG L Z, GUO Y Y, WANG L M. The magical Antarctic krill: Collector’s edition. Beijing: China Agriculture Press, 2022[王联珠, 郭莹莹, 王黎明. 神奇的南极磷虾: 典藏版. 北京: 中国农业出版社, 2022]
WANG X L. Effects of simulated gastric fluid digestion on the epitopes and allergenicity of major allergen tropomyosin in shrimp. Master’s Thesis of Shanghai Ocean University, 2019[王学丽. 模拟胃液消化对虾类主要过敏原原肌球蛋白抗原表位和致敏性的影响. 上海海洋大学硕士研究生学位论文, 2019]
XIE D, GONG M Y, WEI W, et al. Antarctic krill (Euphausia superba) oil: A comprehensive review of chemical composition, extraction technologies, health benefits, and current applications. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(2): 514-534
YAN Y, LIN Y, ZHANG L, et al. Dietary supplementation with fermented Antarctic krill shell improved the growth performance, digestive and antioxidant capability of Macrobrachium nipponense. Aquaculture Reports, 2023, 30: 101587
YANG L, WANG L M, ZHOU G Y, et al. Processing technology, quality characteristics and application status of Antarctic krill powder. Marine Fisheries, 2022, 44(4): 501-512[杨柳, 王鲁民, 周国燕, 等. 南极磷虾粉的加工工艺、品质特性与应用研究进展. 海洋渔业, 2022, 44(4): 501-512]
YANG R, ZHAO Y Q, ZHANG Q. Research progress of liver system damage caused by fluorosis. Chinese Journal of Control of Endemic Diseases, 2022, 37(3): 198-199[杨瑞, 赵亚倩, 张强. 氟中毒对肝脏系统损伤的研究进展. 中国地方病防治, 2022, 37(3): 198-199]
YAO M K, GAI X L, ZHANG M S, et al. Two proteins prepared from defatted Antarctic krill (Euphausia superba) powder: Composition, structure and functional properties. Food Hydrocolloids, 2023, 145: 109009
YU F, WANG H L, JIANG X M, et al. A new multistage counter current extraction method of removing fluoride from defatted Antarctic krill powder. Journal of Food Processing and Preservation, 2020, 44(5): e14437
ZHANG R J, QIU W Q, ZHANG M S, et al. Effects of different heating methods on the contents of nucleotides and related compounds in minced Pacific white shrimp and Antarctic krill. LWT, 2018, 87: 142-150
ZHAO Y M, ZHANG Z Y, LI Z X, et al. Insight into the conformational and allergenicity alterations of shrimp tropomyosin induced by Sargassum fusiforme polyphenol. Food Research International, 2023, 165: 112521
ZHU Z H, DENG S G, LI Y J, et al. The effect of removing arsenic from Antarctic krill oil. The Food Industry, 2019, 40(7): 73-76[朱子豪, 邓尚贵, 李钰金, 等. 南极磷虾油脱砷效果. 食品工业, 2019, 40(7): 73-76]
ZUIDMEER-JONGEJAN L, FERNANDEZ-RIVAS M, POULSEN L K, et al. FAST: Towards safe and effective subcutaneous immunotherapy of persistent life-threatening food allergies. Clinical and Translational Allergy, 2012, 2(1): 5