5种光色对牙鲆幼鱼生长、生化及基因表达的影响
doi: 10.19663/j.issn2095-9869.20240716001
刘霞1,2 , 司飞1,2 , 孙朝徽1,2 , 任建功1,2 , 徐岩1,2 , 薛向平1,2
1. 中国水产科学研究院北戴河中心实验站 河北省渤海鱼类种质资源保护与利用重点实验室 河北 秦皇岛 066100
2. 中国水产科学研究院渤海渔业研究中心 河北 秦皇岛 066100
基金项目: 中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金(2022ZX03)、国家现代农业产业技术体系 (CARS-47)和农业基础性长期性科技工作国家渔业资源环境秦皇岛观测实验站(NAES054FS08)共同资助
Growth, Biochemical Responses, and Gene Expression of Juvenile Paralichthys olivaceus to Five Light Colors
LIU Xia1,2 , SI Fei1,2 , SUN Zhaohui1,2 , REN Jiangong1,2 , XU Yan1,2 , XUE Xiangping1,2
1. Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Qinhuangdao 066100 , China
2. Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100 , China
摘要
牙鲆(Paralichthys olivaceus)具有体型大、成长速度快、肉质优良、营养价值丰富及洄游距离短等特点,是重要的海水增养殖经济物种。由于牙鲆工厂化养殖模式的集约化程度高和环境可控性强,被广泛应用。在该模式下,养殖车间通常采用人工照明来满足养殖需求。但不同光色环境对水生生物的生长、生理生化过程及应激反应有一定的抑制或促进作用。同一光谱对不同发育阶段的同种鱼类产生的影响亦有不同。目前不同光色对牙鲆幼鱼的影响未见报道,因此,本研究选取 450 尾体质优良且体型均匀的牙鲆幼鱼作为研究对象,设置 5 种 LED 光谱参数,分别为红光(λ 625~ 630 nm)、黄光(λ 570~575 nm)、蓝光(λ 450~455 nm)、绿光(λ 525~530 nm)以及全光谱(λ 380~780 nm,对照组)。水温控制在(18.0±1.0) ℃,光照周期为 12 L∶12 D,光强设置为(250±20) mW/m²。研究 5 种不同光色对牙鲆幼鱼生长、酶活、激素及基因表达的影响,旨在为牙鲆幼鱼工厂化养殖光色选择提供理论支撑。结果显示,蓝光组和绿光组牙鲆幼鱼的增重率和特定生长率显著高于其他组 (P<0.05)。红光组牙鲆幼鱼生长激素含量最低为(10.68±0.61) ng/mL,显著低于其他组(P<0.05),而皮质醇含量最高为(1487.44±54.42) pg/mL,显著高于其他组(P<0.05);蓝光组牙鲆幼鱼生长激素含量最高为(20.74±1.52) ng/mL,显著高于其他组(P<0.05)。绿光组牙鲆幼鱼胃淀粉酶活性显著高于红光组和对照组(P<0.05);红光组牙鲆幼鱼的胃纤维素酶活性显著低于对照组(P<0.05);红光组牙鲆幼鱼肠纤维素酶活性显著低于其他组(P<0.05)。红光组牙鲆幼鱼血清 CAT 活性显著低于其他组 (P<0.05),肝脏 CAT 活性显著低于对照组(P<0.05);各实验组牙鲆幼鱼肝脏 SOD 活性差异不显著 (P>0.05)。红光组牙鲆幼鱼肝脏 SOD 基因的相对表达量显著低于黄光组(P<0.05),但与其他组差异不显著;红光组牙鲆幼鱼肝脏 CAT 基因的相对表达量最低,且显著低于其他组(P<0.05),黄光组牙鲆幼鱼肝脏 CAT 基因的相对表达量最高,且显著高于其他组(P<0.05),蓝光组、绿光组和对照组牙鲆幼鱼 CAT 基因的相对表达量差异不显著。结果表明,蓝光和绿光下养殖对牙鲆幼鱼生长具有明显促进作用,在红光下,牙鲆幼鱼持续处于应激状态,抗氧化能力和消化能力均减弱。该研究结果为提高牙鲆幼鱼室内工厂化养殖效能提供理论依据,对工厂化牙鲆幼鱼绿色健康养殖具有重要的推动作用。
关键词
Abstract
Paralichthys olivaceus is an economically important target species in marine aquaculture because of its large size, rapid growth rate, excellent meat quality, rich nutritional value, and short-distance migratory habits. Industrial farming models have been widely used owing to their high degree of intensification and environmental controllability. Artificial lighting is commonly used in factory farming to meet the farming requirements. Compared to the traditional artificial lighting of straight-tube fluorescent lamps or compact fluorescent lamps, LED lamps have the advantages of energy saving and environmental protection, long service life, low heat generation, and high photoelectric conversion efficiency. Additionally, LEDs can accurately regulate the spectrum and intensity of light according to demand, which has been rapidly promoted in factory farming. Different light-colored environments have a certain degree of inhibitory or promotional effects on the growth, physiological and biochemical processes, and stress responses of aquatic organisms. The study aimed to provide theoretical support for the selection of light colors for juvenile P. olivaceus in factory farming. In this study, a total of 450 individuals with good body condition and uniform body size were selected, with a mean body mass of (309.66±32.73) g and an initial total length of (28.67±2.66) cm. Five LED spectral parameters were set, which were red (λ 625–630 nm), yellow (λ 570–575 nm), blue (λ 450–455 nm), and green (λ 525–530 nm), and full spectrum (λ 380–780 nm) as the control group. Water temperature was controlled at (18.0±1.0 ℃), photoperiod was 12L:12D. The light intensity was set at (250±20) mW/m2 . The effects of five different light colors on the growth, enzyme activity, hormone levels, and gene expression of juvenile P. olivaceus were studied. The enzyme activities included two antioxidant enzymes, SOD and CAT, and two digestive enzymes, amylase and fibrillase; whereas, the hormones included growth hormone and cortisol, and the genes were mainly SOD and CAT. The results showed that the weight gain and specific growth rates of juvenile P. olivaceus in the blue and green light groups were significantly higher than those in the other groups (P < 0.05). The growth hormone content of juvenile P. olivaceus in the blue light group was the highest at (20.74±1.52) ng/mL, which was significantly higher than that of other groups (P<0.05). The growth hormone content of juvenile P. olivaceus in the red light group was the lowest at (10.68±0.61) ng/mL, which was significantly lower than that of other groups (P<0.05), while the cortisol content was the highest at (1487.44±54.42) pg/mL, which was significantly higher than that of other groups (P<0.05). The gastric amylase activity of juvenile P. olivaceus in the green light group was significantly higher than those in the red light and control groups (P<0.05). The gastric cellulase activity of juvenile P. olivaceus in the red light group was significantly lower than that in the control group (P<0.05). The intestinal cellulase activity of juvenile P. olivaceus in the red light group was significantly lower than that in the other groups (P<0.05). CAT activity in the serum of juvenile P. olivaceus in the red light group was significantly lower than that in the other groups (P<0.05), and liver CAT activity was significantly lower than that of the control group (P<0.05). The differences in the liver SOD activity of juvenile P. olivaceus in each light-colored group were not significant (P>0.05). The relative expression of liver SOD gene of juvenile P. olivaceus in the red light group was significantly lower than that in the yellow light group (P<0.05), but the difference with other groups was not significant; the relative expression of CAT genes in the liver of juvenile P. olivaceus in the red light group was the lowest and significantly lower than that in the other groups (P<0.05), the relative expression of liver CAT gene of juvenile P. olivaceus in the yellow light group was the highest, and significantly higher than that in the other groups (P<0.05), and the relative expression of CAT gene of juvenile P. olivaceus in the blue light group, green light group and control group was not significant different. These results show that blue and green light cultures significantly affected the growth of juvenile P. olivaceus, whereas red light continuously stressed juvenile P. olivaceus weakening their antioxidant and digestive capacities. Furthermore, these results provide a theoretical basis for improving the indoor factory aquaculture efficacy of juvenile P. olivaceus and promoting green healthy factory aquaculture of juvenile P. olivaceus.
受光色在水中的吸收与波长和水深关系的影响,不同深度水域光色环境存在差异(Liu et al,2024; Yang et al,2020)。然而,不同光色环境会对水生生物的生长、生理生化过程、应激反应等产生一定程度的抑制或促进效应(Villamizar et al,2009)。研究发现,蓝光照射可促进黑线鳕(Melanogrammus aeglefinus)的生长(Downing et al,2001),但对黄金鲈(Perca flavescens)、虹鳟(Oncorhynchus mykiss)和白条双锯鱼(Amphiprion frenatus)的生长起抑制作用(Head et al,2000; Karakatsouli et al,2007; 马本贺等,2017)。红光利于大西洋鲑的生长(仇登高等,2015),但对条斑星鲽(Verasper moseri)的生长起抑制作用(Yamanome et al,2009)。Liu 等(2024)研究发现,同一光谱对不同发育阶段的鱼类产生的影响亦有不同,在红鳍东方鲀的仔稚鱼阶段,蓝光促进其生长发育(魏平平等,2020),但在红鳍东方鲀幼鱼阶段,绿光更利于其生长(刘松涛等,2021)。因此,光色对不同鱼类的影响呈现明显的物种差异性。
牙鲆(Paralichthys olivaceus)作为我国沿海广泛分布的海洋生物,尤其在黄渤海的产量较为丰富。该物种以其较大的体型、较快的生长速度、优良的肉质、丰富的营养价值以及短距离的洄游习性,成为一种具有重要经济价值的海水增养殖目标物种(雷霁霖,2005; 司飞等,2019)。自 20 世纪 50 年代起,我国开始了牙鲆人工繁育研究(杨正勇等,2011),并在 20 世纪 80 年代成功实现了人工苗种规模化培育(孙佩锦,1985),自 1992 年起,牙鲆的养殖技术得到了逐渐普及与推广,进而形成了网箱养殖、池塘养殖和工厂化养殖等多元化养殖模式。特别是工厂化养殖模式,因其集约化程度高及环境可控能力强,已被广泛应用。在此模式下,养殖车间多采用人工控光的方式进行养殖。相比直管荧光灯或紧凑型荧光灯,LED 灯不仅具有节能环保、寿命长、发热低、光电转换效率高等优点,还能够根据需求精准调控光谱和光强,在工厂化养殖中得到快速推广(Yeh et al,2014; 崔鑫,2019)。目前关于不同光色对牙鲆生长影响的研究主要集中在仔稚鱼阶段(Benedict et al,2019),而对幼鱼阶段的研究未见报道。
本研究拟在全光谱、红光、黄光、蓝光和绿光条件下进行牙鲆幼鱼养殖实验,分析不同光色对其生长、抗氧化酶、消化酶的活性,生长应激相关激素含量水平以及抗氧化基因表达的影响,以期为养殖企业或养殖户在养殖过程中进行牙鲆幼鱼适宜光色的选择提供科学依据,为牙鲆养殖产业持续健康发展提供理论支撑。
1 材料与方法
1.1 实验材料
本研究所用实验对象来自中国水产科学研究院北戴河中心实验站,为 2021 年 4 月培育出的 220 日龄牙鲆幼鱼。实验选取 450 尾体质优良、体型均匀的个体进行研究,其平均体质量为(309.66±32.73)g,初始全长为(28.67±2.66)cm。
1.2 实验方法
2021 年 11 月 19 日至 2022 年 2 月 16 日在北戴河站开展实验,周期为 90 d,实验设计包括红光(λ 625~630 nm)、黄光(λ 570~575 nm)、蓝光(λ 450~455 nm)、绿光(λ 525~530 nm)4 个光色实验组,以全光谱(λ 380~780 nm)作为对照组,实验组与对照组均为 LED 光源,全光谱特性图见图1。各处理组设置 3 个重复,各组间通过遮光布构建的暗室予以隔离,以保证实验条件的独立性。
每个养殖水槽放置 1 盏功率为 40 W 的 LED 光源,该光源固定在水槽正上方,以确保光照能直接照射到养殖区域。养殖水槽的水深设定为 0.8 m,水表面的辐射照度被控制在(250±20)mW/m2 的范围内。为了保证实验条件的一致性,养殖水槽每次换水之后,使用照度计(SW-6023)矫正水表面的辐射照度,使其保持一致,本研究采用了 12 h 光照、12 h 黑暗的光周期(12 L︰12 D),每日 06:00 开灯,18:00 关灯,由电子定时器控制。实验鱼养殖在 1 t 的圆柱形白色塑料水槽中,每槽放养牙鲆幼鱼 30 尾。在整个实验期间,每日于 08:00 和 14:00 投喂东丸牌配合饲料各 1 次,日投喂量为鱼体重的 2%。投喂期间每天换水 1 次,换水量为养殖水体的 90%,每天吸污 2 次。在投喂期间保持水温恒定(18.0±1.0)℃。
1.3 样品采集及处理
实验结束后,实验鱼停食 24 h 后采集样本。每个水槽随机选取 3 尾鱼,每个处理组共 9 尾鱼。参照王秀华等(2009)麻醉方法,先用海水配制浓度为 60 mg/L 的 MS-222 溶液 20 L,放入气石进行充气,后将待解剖鱼放入 MS-222 溶液中浸泡,观察鱼体所有鳍条停止摆动时,将鱼捞出放入解剖盘进行采血及剖取组织样本。使用 5 mL 注射器通过尾静脉取血采集血液,约 5 mL/尾,采集的血液置于灭菌、无抗凝剂的 5 mL EP 管中,4℃冰箱静置 2 h,4℃、3 500 r/min 离心 10 min,取上清液,超低温冰箱(–80℃)保存待用,用于后期血清中生长应激相关激素水平的测定。取牙鲆幼鱼肝脏、胃、肠道组织,置于液氮速冻后移至–80℃冰箱中保存,用于后续组织中生化指标测定及基因表达测定分析。
1全光谱特性
Fig.1Full spectrum spectral characterization
1.4 生长指标的测定
测量牙鲆幼鱼初始、结束体重与体长并记录。用于增重率(WGR)、特定生长率(SGR)和存活率(SR)的计算。计算公式如下:
WGR(%)=Wt-W0/W0×100
(1)
SGR(%/d)=lnWt-lnW0/d×100
(2)
SR(%)=N2-N1/N1×100
(3)
式中,W0 为牙鲆幼鱼初始体重,Wt 为牙鲆幼鱼实验末重,d 为实验天数,N1 N2 分别为实验前和实验后牙鲆尾数。
1.5 生化指标及相关激素测定
牙鲆幼鱼的血清及肝脏的抗氧化能力指标包括超氧化物歧化酶(SOD)和过氧化氢酶(CAT),牙鲆幼鱼胃和肠道消化能力指标包括淀粉酶(AMS)和纤维素酶(CL),上述指标均使用试剂盒测定,其中组织匀浆的蛋白质浓度采用考马斯亮蓝法测定,SOD 采用羟胺法测定,CAT 采用钼酸铵法测定,AMS 采用碘–淀粉比色法测定,CL 采用分光光度比色法测定,吸光度使用紫外可见分光光度计(UH5300)测定。
牙鲆幼鱼生长激素(GH)和皮质醇含量使用鱼生长激素 ELISA 检测试剂盒和鱼皮质醇(Cortisol)ELISA 检测试剂盒进行测定。
1.6 基因表达测定
取牙鲆幼鱼肝脏组织 20 mg,加入 300 μL 裂解液 RL 和 3 μL 的 β-巯基乙醇,用电动研磨棒将肝脏组织彻底研磨。RNA 提取方法参照 RNA prep Pure Tissue Kit 说明书进行。1%琼脂糖凝胶电泳检测提取总 RNA 质量,微量紫外分光光度计(Pultton P100+)测定 RNA 的 OD260 nm 及 OD280 nm 值,根据 OD260 nm/OD280 nm 的比值判断总 RNA 纯度。经检测合格后的 RNA,按照 TaKaRa PrimerScriptTM RT-PCR 试剂盒反转录获得 cDNA 模板。
文中 SOD(EF681883)、 CAT (GQ229479)和 β-actin (HQ386788)基因引物序列参考 Kim 等(2016) 合成(表1)。利用实时荧光定量 PCR 仪(qPCR)对牙鲆幼鱼肝脏组织中的 SODCAT 基因表达情况进行荧光定量分析,实验按照试剂盒 2×SG Green qPCR Mix 说明书进行。向反应体系中依次加入下列反应溶液(共 10 μL):5 μL 2×SG Green qPCR Mix,0.5 μL 正向引物(10 μmol/L),0.5 μL 反向引物(10 μmol/L),1 μL 模板 cDNA,3 μL ddH2O。将样品试剂混匀,利用 Bio-Rad CFX Connect PCR 仪进行反应。PCR 程序:95℃预变性 3 min;95℃变性 10 s,60℃退火 20 s,72℃延伸 10 s,共进行 40 个循环,实验结束后对熔解曲线进行分析。所有 PCR 过程中,生物学样品为 3 个平行,每个 RNA 样品均设有 3 个重复。
1SODCATβ-actin 引物序列(Kim et al,2016
Tab.1Primer sequences of SOD, CAT and β-actin gene
1.7 数据处理
qPCR 分析的实验结果数据,采用 2–∆∆Ct 法分析计算目的基因的相对表达量(Livak et al,2001)。采用 SPSS 20.0 统计软件对数据进行单因素方差分析(one-way ANOVA),Duncan 法进行处理间多重比较, P<0.05 为有显著统计学差异;结果采用平均值±标准差(Mean±SD)表示,并使用 Excel 绘制图表。
2 结果与分析
2.1 不同光色对牙鲆幼鱼生长发育的影响
牙鲆幼鱼在不同光色下培育 90 d,各组牙鲆幼鱼体重呈逐渐上升的趋势,其生长发育存在显著差异(P<0.05)(表2),蓝光组幼鱼增重率最高,为(45.36± 23.44)%,红光组幼鱼增重率最低,为(25.83±7.21)%。不同光色处理组幼鱼的增重率和特定生长率由高至低为蓝光、绿光、黄光、全光谱、红光,蓝光和绿光组牙鲆幼鱼的增重率和特定生长率显著高于其他组(P<0.05)。在实验过程中,所有实验组鱼均无死亡。
2不同光色对牙鲆幼鱼生长性能的影响
Tab.2The effects of different light colors on growth performance of juvenile P. olivaceus
注:同列中标有不同字母表示组间有显著性差异(P<0.05),标有相同字母或无字母表示无显著性差异(P>0.05)。下同。
Note: Data with different letters in the same column are significantly different in the groups (P<0.05) , and data with the same letter or without letter are no significant differences (P>0.05) . The same below.
2.2 不同光色对牙鲆幼鱼生长激素及皮质醇含量的影响
表3可见,红光组牙鲆幼鱼生长激素含量最低,为(10.68±0.61)ng/mL,显著低于其他各组(P<0.05),而皮质醇含量最高,为(1 487.44±54.42)pg/mL,显著高于其他各组(P<0.05);蓝光组牙鲆幼鱼生长激素含量最高,为(20.74±1.52)ng/mL,显著高于其他组(P<0.05);其余各组幼鱼生长激素含量与皮质醇含量差异不显著(P>0.05)。
2.3 不同光色对牙鲆幼鱼消化酶活性的影响
表4所示,绿光组牙鲆幼鱼胃淀粉酶活性最高,为(0.58±0.01)U/mg prot,与红光组和对照组存在显著性差异(P<0.05);红光组牙鲆幼鱼的胃纤维素酶活性最低,为(3.36±0.05)U/mg prot,显著低于对照组(P<0.05);红光组牙鲆幼鱼肠道纤维素酶活性最低,为(4.38±1.19)U/mg prot,显著低于其他各组(P<0.05)。各实验组的肠淀粉酶活性差异不显著(P>0.05)。但蓝光组和绿光组的肠淀粉酶含量低于其他组。
2.4 不同光色对牙鲆幼鱼血清和肝脏抗氧化能力的影响
表5可见,蓝光组牙鲆幼鱼血清 SOD 活性最高,为(113.09±6.54)U/mL,显著高于黄光组(P<0.05);红光组牙鲆幼鱼血清 CAT 活性和肝脏 CAT 活性均最低,分别为(2.01±0.82)U/mL、(3.15±0.70)U/mg prot,血清 CAT 活性显著低于其他各组(P<0.05),而肝脏 CAT 活性显著低于对照组(P<0.05);各实验组牙鲆幼鱼的肝脏 SOD 活性差异不显著(P>0.05)。
3不同光色对牙鲆幼鱼生长及应激相关激素含量的影响
Tab.3The effects of different light colors on growth and stress-related hormone content of juvenile P. olivaceus
2.5 不同光色对牙鲆幼鱼抗氧化基因的影响
图2图3可得,红光组牙鲆幼鱼肝脏 SOD 基因的相对表达量最低,且显著低于黄光组(P<0.05),但与其他组差异不显著(P>0.05);红光组牙鲆幼鱼肝脏 CAT 基因的相对表达量最低,且显著低于其他组(P<0.05),黄光组牙鲆幼鱼肝脏 CAT 基因的相对表达量最高,且显著高于其他组(P<0.05),对照组、蓝光组和绿光组牙鲆幼鱼 CAT 基因的相对表达量差异不显著(P>0.05)。
3 讨论
3.1 不同光色对牙鲆幼鱼生长的影响
光色组成对海洋生物的影响因生物种类和其生长发育而异,特定生长率和体重增长率作为评价生物生长状况的关键指标,为研究提供了最直观的数据支撑( 李玉龙等,2024)。以往研究显示,舌齿鲈(Dicentrarchus labrax)在红光下表现出更高的体重和体重比增长率(任纪龙等,2019),在绿、蓝、白光下,大西洋鲑(Salmo salar)的增重率较高(Migaud et al,2007)。本研究中,蓝光和绿光组牙鲆幼鱼的增重率和特定生长率显著高于其他组,表明蓝光和绿光有利于牙鲆幼鱼的生长。这一实验结果与 Yamanome 等(2009)对条斑星鲽的研究相似,绿光能促进条斑星鲽生长,而红光会抑制其生长。推测原因是海水对光具有吸收作用,光随海水深度增加而快速衰减,光谱成分也发生了极大的改变,能量较低的红光光谱在浅水域占优势,而能量较高的蓝光光谱在深水域占据主导地位,随着水深的增加导致到达底部的光只有蓝绿光(崔振权等,2021),牙鲆和条斑星鲽均属于底栖鱼类,鱼类存在的视觉色素细胞为适应生活中的光波,会对不同的光谱产生不同的偏好性(卢宏博等,2023),深水活动的鱼类光谱敏感曲线在短波长范围内,即对蓝绿光敏感(He et al,2010),这造成牙鲆更适应蓝绿光环境,有较高的增重率和特定生长率。
3.2 不同光色对牙鲆幼鱼生长激素及皮质醇的影响
鱼类生长激素具有促进生长、提高摄食效率、参与蛋白质合成、促进脂肪代谢和调节渗透压等作用(韩建等,2023)。本研究发现,蓝光组牙鲆幼鱼的生长激素含量显著高于红光组,与蓝光组牙鲆幼鱼的增重率和特定生长率显著高于红光组整体表现基本一致。Ruchin(2021)研究发现,光照通过刺激生长激素的分泌影响鱼类的生长,因此推测蓝光照射有助于牙鲆幼鱼生长激素的分泌,进而促进其生长。除此之外,蓝光被认为对视网膜中的光敏细胞有更强的刺激作用,进而通过神经信号影响松果体分泌褪黑素,褪黑素的分泌水平与生长激素的分泌密切相关(Gooley et al,2011),本研究中鱼类生长激素含量的变化与褪黑激素是否相关仍需进一步探究。
4不同光色对牙鲆幼鱼消化酶活性的影响/(U/mg prot)
Tab.4The effects of different light colors on digestive enzyme activity of juvenile P. olivaceus/ (U/mg prot)
5不同光色对实验鱼血清和肝脏抗氧化能力的影响
Tab.5The effects of different light colors on antioxidant ability of serum and liver in experimental fish
2不同光色对牙鲆幼鱼 SOD 基因相对表达量的影响
Fig.2The effects of different light colors on the relative expression level of SOD gene in juvenile P. olivaceus
不同字母者表示组间有显著性差异(P<0.05),相同字母者表示无显著性差异(P>0.05)。下同。
Different letters indicate significant different between groups (P<0.05) , and the same letters indicate no significant differences (P>0.05) . The same below.
3不同光色对牙鲆幼鱼 CAT 基因相对表达量的影响
Fig.3The effects of different light colors on the relative expression level of CAT gene in juvenile P. olivaceus
在应激状态下,皮质醇是常用的评价指标(Wu et al,2017),当鱼类神经系统感受到外界环境的变化时会刺激肾上腺素的分泌,随后通过下丘脑–垂体– 肾间细胞系统分泌皮质醇,从而导致血浆皮质醇含量上升(Cook et al,2011; Sampaio et al,2016),也有研究发现,血浆皮质醇在应激过程中能持续保持较高水平(丁淑荃等,2019)。本研究发现,红光组牙鲆幼鱼的皮质醇含量显著高于其他组,与 Wang 等(2013)研究发现过高或过低的光照强度均会使斜带石斑鱼(Epinephelus coioides)产生应激,导致其体内皮质醇含量的升高结果一致。推测牙鲆幼鱼在红光照射下长期处于应激状态,而长时间的应激导致其机体产生损伤。
3.3 不同光色对牙鲆幼鱼消化酶活性的影响
鱼类消化酶活性是反映鱼类对营养物质吸收利用情况的重要指标,消化酶活性受其生长周期、生活环境及食性等的影响,而光色等环境因子通过影响水生生物生活习性进而影响其消化酶的活性(柳森等,2022)。光色的变化会导致身体失去更多的能量,需要消化酶更活跃地消化食物,以保证能量的正常供应(时嘉赓等,2020),幼鱼表现出的高酶活性是它们在生理上准备处理外源性食物的重要迹象,并且在第 1 次摄食开始时处于有利的营养状态(Shan et al,2008)。本研究结果显示,绿光组牙鲆幼鱼胃淀粉酶的活性显著高于对照组,可能是由于淀粉酶活性升高便于鱼类吸收淀粉,而淀粉的吸收促进了鱼体的生长(任鸣春等,2014),导致绿光组牙鲆幼鱼生长较快,从而提高其增重率和特定生长率。这与陈婉情(2016)研究发现绿光能提高豹纹鳃棘鲈(Plectropomus leopardus)幼鱼消化酶活性结果一致。蓝光和绿光组牙鲆肠淀粉酶含量低,原因是消化道中淀粉酶含量在不同部位其活性不完全相同(王宏田等,2002)。纤维素酶主要裂解纤维素成寡糖或单糖(张植元等,2017),可改善饵料营养结构,可刺激生物体内源消化酶的分泌,促进肠道的蠕动进而提高饵料的消化率,消化性能增强,促进鱼类生长(Suzer et al,2008; 陈思彤,2022)。红光组牙鲆幼鱼胃和肠道纤维素酶活性显著低于对照组,表明红光组鱼肠道纤维素酶活性低,不利于饵料的消化,进而导致鱼体增重率较低。
3.4 不同光色对牙鲆幼鱼抗氧化能力的影响
鱼类在受到环境胁迫时,由 SOD 和 CAT 组成抗氧化系统,来抵御外界对机体产生的氧化应激(Reyes-Becerril et al,2008)。CAT 和 SOD 可以有效地清除氧自由基,减少机体氧化损伤,提高机体免疫力(Li et al,2022)。当体内活性氧堆积超过了抗氧化酶的清除能力,体内过多有毒自由基便会对抗氧化酶的活性产生抑制作用,造成机体损伤(Bussell et al,2008)。 Li 等(2014)研究发现,长期的慢性应激会影响团头鲂(Megalobrama amblycephala)的生理状态,抑制其免疫功能。本研究发现,红光组牙鲆幼鱼血清和肝脏的 CAT 活性显著低于其他组,主要原因可能是本实验周期 90 d,为慢性影响实验,长期的红光照射对牙鲆造成持续性应激,使其抗氧化能力减弱,体内活性氧堆积超出了抗氧化酶的清除能力,造成鱼体损伤。此外,红光组肝脏中 SOD CAT 基因表达量均低于其他各组,低表达量也意味着红光组幼鱼组织细胞的抗氧化防御机制受损或功能障碍,导致无法有效应对氧化应激。红光组牙鲆幼鱼抗氧化酶活性较低与 SODCAT 基因表达量较低,均有效证明红光组中牙鲆幼鱼机体受到损伤。黄光组 CAT 基因表达量显著高于其他组,推测长时间的黄光照射对牙鲆幼鱼产生了氧化应激,但应激水平较低,未对机体产生损伤,未影响鱼体的生长。此外,肝脏中 CAT 基因表达量与相应酶活性的变化趋势存在差异,推测原因是基因在翻译成蛋白的过程中受多种调控因素影响(Liang et al,2020; 丰超杰等,2023)。抗氧化酶活性及其基因表达趋势不同,也可能与生物体内酶的类型及样本组织有关,具体原因还有待深入探究。
4 结论
综上,不同光色对牙鲆幼鱼的生长、消化和抗氧化等都有不同的影响。在蓝光和绿光条件下,牙鲆幼鱼表现出较好的生长性能,其中蓝光下牙鲆幼鱼生长状况更好,生长激素处于较高水平,而牙鲆幼鱼在红光条件下抗氧化酶活性较低且皮质醇含量较高,长期处于应激状态。但是,关于不同时间段光色对牙鲆幼鱼的生长发育研究有限,其确切的生理机制仍有待充分了解,需要进一步研究不同光色对牙鲆幼鱼的急性和亚急性影响,为选择适合牙鲆幼鱼生殖环境提供理论基础。
1全光谱特性
Fig.1Full spectrum spectral characterization
2不同光色对牙鲆幼鱼 SOD 基因相对表达量的影响
Fig.2The effects of different light colors on the relative expression level of SOD gene in juvenile P. olivaceus
3不同光色对牙鲆幼鱼 CAT 基因相对表达量的影响
Fig.3The effects of different light colors on the relative expression level of CAT gene in juvenile P. olivaceus
1SODCATβ-actin 引物序列(Kim et al,2016
Tab.1Primer sequences of SOD, CAT and β-actin gene
2不同光色对牙鲆幼鱼生长性能的影响
Tab.2The effects of different light colors on growth performance of juvenile P. olivaceus
3不同光色对牙鲆幼鱼生长及应激相关激素含量的影响
Tab.3The effects of different light colors on growth and stress-related hormone content of juvenile P. olivaceus
4不同光色对牙鲆幼鱼消化酶活性的影响/(U/mg prot)
Tab.4The effects of different light colors on digestive enzyme activity of juvenile P. olivaceus/ (U/mg prot)
5不同光色对实验鱼血清和肝脏抗氧化能力的影响
Tab.5The effects of different light colors on antioxidant ability of serum and liver in experimental fish
BENEDICT N R, KIM Y, KIM J. Effects of different light wavelengths on the growth of olive flounder (Paralichthys olivaceus). Journal of Life Science, 2019, 29(3): 311-317
BUSSELL J A, GIDMAN E A, CAUSTON D R, et al. Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. Journal of Experimental Marine Biology and Ecology, 2008, 358(1): 78-85
CHEN S T. Research on the application of cellulase in aquaculture. Feed Research, 2022, 45(6): 135-138[陈思彤. 纤维素酶在水产养殖中的应用研究. 饲料研究, 2022, 45(6): 135-138]
CHEN W Q. Effects of five light colors on growth characteristics and physiological and biochemical functions of juvenile Plectropomus leopardus. Master’s Thesis of Shanghai Ocean University, 2016[陈婉情. 5 种光色对豹纹鳃棘鲈幼鱼生长特征及生理生化功能的影响. 上海海洋大学硕士研究生学位论文, 2016]
COOK K V, MCCONNACHIE S H, GILMOUR K M, et al. Fitness and behavioral correlates of pre-stress and stress-induced plasma cortisol titers in pink salmon (Oncorhynchus gorbuscha) upon arrival at spawning grounds. Hormones and Behavior, 2011, 60(5): 489-497
CUI X. Growth, development, and survival of European sea bass (Dicentrarchus labrax) larvae cultured under different light spectra and intensities. Master’s Thesis of Dalian Ocean University, 2019[崔鑫. 光谱和光强对欧洲舌齿鲈(Dicentrarchus labrax)幼鱼生长、存活和发育的影响. 大连海洋大学硕士研究生学位论文, 2019]
CUI Z Q, LIU J L, XIA Q, et al. Effects of different light colors on the growth and physiology of Pseudosciaena crocea. Journal of Jiangsu Ocean University (Natural Science Edition), 2021, 30(1): 1-6[崔振权, 柳佳玲, 夏青, 等. 不同光色对大黄鱼生长及生理的影响. 江苏海洋大学学报(自然科学版), 2021, 30(1): 1-6]
DING S Q, CHEN F, MA H, et al. Changes in physiological responses of Paramisgurnus dabryanus suffering from aerial exposure and ammonia loading stress. Freshwater Fisheries, 2019, 49(6): 15-19[丁淑荃, 陈范, 马欢, 等. 氨和空气暴露对大鳞副泥鳅血浆皮质醇、乳酸及血糖含量的影响. 淡水渔业, 2019, 49(6): 15-19]
DOWNING G, LITVAK M K. The effect of light intensity and spectrum on the incidence of first feeding by larval haddock. Journal of Fish Biology, 2001, 59(6): 1566-1578
FENG C J, ZHANG Y, ZHANG Y Q, et al. Effects of acute temperature stress on serum biochemical indexes, digestive enzymes, antioxidant enzymes and gene expression of Thymallus arcticus grubei. Freshwater Fisheries, 2023, 53(6): 37-45[丰超杰, 张颖, 张永泉, 等. 急性高温胁迫对黑龙江茴鱼血清生化指标、消化酶、抗氧化酶活性及其基因表达的影响. 淡水渔业, 2023, 53(6): 37-45]
GOOLEY J J, CHAMBERLAIN K, SMITH K A, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. The Journal of Clinical Endocrinology and Metabolism, 2011, 96(3): E463-E472
HAN J, WANG M L, CAO S N, et al. Effects of light color, light intensity and photoperiod on growth and feeding of juvenile turbot (Scophthalmus maximus). Journal of Dalian Ocean University, 2023, 38(5): 787-794[韩建, 王茂林, 曹胜男, 等. 光色、光照度和光周期对大菱鲆幼鱼生长和摄食的影响. 大连海洋大学学报, 2023, 38(5): 787-794]
HE P G. Fish vision and its role in fish capture. Wiley-Blackwell, 2010, 25-44
HEAD A B, MALISON J A. Effects of lighting spectrum and disturbance level on the growth and stress responses of yellow perch Perca flavescens. Journal of the World Aquaculture Society, 2000, 31(1): 73-80
KARAKATSOULI N, PAPOUTSOGLOU S E, PIZZONIA G, et al. Effects of light spectrum on growth and physiological status of gilthead seabream Sparus aurata and rainbow trout Oncorhynchus mykiss reared under recirculating system conditions. Aquacultural Engineering, 2007, 36(3): 302-309
KIM B S, JUNG S J, CHOI Y J, et al. Effects of different light wavelengths from LEDs on oxidative stress and apoptosis in olive flounder (Paralichthys olivaceus) at high water temperatures. Fish & Shellfish Immunology, 2016, 55: 460-468
LEI J L. Marine fish culture theory and techniques. Beijing: China Agriculture Press, 2005[雷霁霖. 海水鱼类养殖理论与技术. 北京: 中国农业出版社, 2005]
LI Q S, LIU Y L, LI S X, et al. Impact of nitrite exposure on oxidative stress and antioxidative-related genes responses in the gills of Procambarus clarkii. Fish & Shellfish Immunology, 2022, 131: 624-630
LI X F, TIAN H Y, ZHANG D D, et al. Feeding frequency affects stress, innate immunity and disease resistance of juvenile blunt snout bream Megalobrama amblycephala. Fish & Shellfish Immunology, 2014, 38(1): 80-87
LI Y L, FU Y Y, ZHANG H, et al. Dietary yeast hydrolysate on growth, digestion, antioxidation and immunity of red swamp crayfish (Procambarus clarkii). Acta Hydrobiologica Sinica, 2024, 48(3): 393-404[李玉龙, 付运银, 张恒, 等. 酵母水解物对克氏原螯虾生长性能、消化、抗氧化和免疫能力的影响. 水生生物学报, 2024, 48(3): 393-404]
LIANG X M, WANG F, LI K B, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): Developmental toxicity, oxidative stress and immunotoxicity. Fish & Shellfish Immunology, 2020, 96: 262-269
LIU S T, CAI H W, LIU Y, et al. Effects of LED spectra on the growth and physiological mechanism of juvenile Sebastes schlegelii. Part I: Growth, feeding and digestion and metabolism. Aquaculture, 2024, 580: 740295
LIU S T, LI Y H, LI X, et al. Effects of LED spectra on growth, feeding, and digestive enzyme activities of juvenile Takifugu rubripes. Journal of Fishery Sciences of China, 2021, 28(8): 1011-1019[刘松涛, 李伊晗, 李鑫, 等. 不同 LED 光谱对红鳍东方鲀幼鱼生长、摄食及消化酶活性的影响. 中国水产科学, 2021, 28(8): 1011-1019]
LIU S, JIANG H Y, QIN F, et al. Effects of different illumination on the growth, digestion, and nonspecific immune-related enzyme activities of Exopalaemon carinicauda. Marine Sciences, 2022, 46(4): 114-122[柳森, 江海仪, 秦峰, 等. 不同光照对脊尾白虾生长、消化和非特异性免疫相关酶活力的影响. 海洋科学, 2022, 46(4): 114-122]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods, 2001, 25(4): 402-408
LU H B, LIU Y, SHEN X F, et al. Effects of light spectrum on intestinal microbial composition of juvenile tiger puffer Takifugu rubripes. Fisheries Science, 2023, 42(2): 241-249[卢宏博, 刘鹰, 沈旭芳, 等. 光谱对红鳍东方鲀幼鱼肠道微生物组成的影响. 水产科学, 2023, 42(2): 241-249]
MA B H, SUN Z B, MA A J, et al. Effect of light color on growth and body color in tomato clownfish Amphiprion frenatus juvenile. Oceanologia et Limnologia Sinica, 2017, 48(1): 148-154[马本贺, 孙志宾, 马爱军, 等. 环境光色对白条双锯鱼(Amphiprion frenatus)幼鱼生长和体色的影响. 海洋与湖沼, 2017, 48(1): 148-154]
MIGAUD H, COWAN M, TAYLOR J, et al. The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar. Aquaculture, 2007, 270(1/2/3/4): 390-404
QIU D G, XU S H, LIU Y, et al. Effects of different types of environment light on the growth performance and feeding of Atlantic salmon (Salmo salar) in recirculating aquaculture systems. Journal of Fishery Sciences of China, 2015, 22(1): 68-78[仇登高, 徐世宏, 刘鹰, 等. 光环境因子对循环水养殖系统中大西洋鲑生长和摄食的影响. 中国水产科学, 2015, 22(1): 68-78]
REN J L, WEI P P, FEI F, et al. Effects of LED spectrum on feeding, growth and energy distribution of juvenile Dicentrarchus labrax. Journal of Fisheries of China, 2019, 43(8): 1821-1829[任纪龙, 魏平平, 费凡, 等. LED 光谱对舌齿鲈幼鱼摄食、生长和能量分配的影响. 水产学报, 2019, 43(8): 1821-1829]
REN M C, JIA W J, GE X P, et al. Effects of dietary starch levels on growth performance, digestive enzyme activities and muscle composition of adult blunt snout bream (Megalobrama amblycephala). Journal of Fisheries of China, 2014, 38(9): 1494-1502[任鸣春, 贾文锦, 戈贤平, 等. 饲料不同淀粉水平对团头鲂成鱼生长性能、消化酶活性及肌肉成分的影响. 水产学报, 2014, 38(9): 1494-1502]
REYES-BECERRIL M, TOVAR-RAMÍREZ D, ASCENCIOVALLE F, et al. Effects of dietary live yeast Debaryomyces hansenii on the immune and antioxidant system in juvenile leopard grouper Mycteroperca rosacea exposed to stress. Aquaculture, 2008, 280(1/2/3/4): 39-44
RUCHIN A B. Effect of illumination on fish and amphibian: Development, growth, physiological and biochemical processes. Reviews in Aquaculture, 2021, 13(1): 567-600
SAMPAIO F D F, FREIRE C A. An overview of stress physiology of fish transport: Changes in water quality as a function of transport duration. Fish and Fisheries, 2016, 17(4): 1055-1072
SHAN X J, XIAO Z Z, HUANG W, et al. Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture, 2008, 281(1/2/3/4): 70-76
SHI J G, FENG Y W, JIANG X, et al. Effects of different algae and polyculture ratio of sea cucumber Apostichopus japonicus and sea urchin Hemicentrotus pulcherrimus on growth, body composition and digestive enzyme activities in sea cucumber and sea urchin. Journal of Dalian Ocean University, 2020, 35(4): 509-515[时嘉赓, 冯艳微, 姜绪, 等. 不同藻类与混养比例对刺参与马粪海胆生长、体成分和消化酶活性的影响. 大连海洋大学学报, 2020, 35(4): 509-515]
SI F, WANG Q L, YU Q H, et al. Use of strontium chloride in otolith marking of Japanese flounder. Progress in Fishery Sciences, 2019, 40(4): 65-72[司飞, 王青林, 于清海, 等. 基于投喂法的牙鲆耳石锶标记. 渔业科学进展, 2019, 40(4): 65-72]
SUN P J. Large-scale artificial cultivation of Paralichthys olivaceus fry was successful in the Institute of Oceanography, China Academy of Sciences. Marine Sciences, 1985, 9(3): 64-2[孙佩锦. 中国科学院海洋研究所牙鲆苗种大规模人工培育成功. 海洋科学, 1985, 9(3): 64-2]
SUZER C, ÇOBAN D, KAMACI H O, et al. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: Effects on growth performance and digestive enzyme activities. Aquaculture, 2008, 280(1/2/3/4): 140-145
VILLAMIZAR N, GARCÍA-ALCAZAR A, SÁNCHEZVÁZQUEZ F J. Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture, 2009, 292(1/2): 80-86
WANG H T, ZHANG P J. Activities of digestive enzyme in different tissues of Paralichthys olivaceus. Oceanologia et Limnologia Sinica, 2002, 33(5): 472-476[王宏田, 张培军. 牙鲆体内消化酶活性的研究. 海洋与湖沼, 2002, 33(5): 472-476]
WANG T, CHENG Y Z, LIU Z P, et al. Effects of light intensity on growth, immune response, plasma Cortisol and fatty acid composition of juvenile Epinephelus coioides reared in artificial seawater. Aquaculture, 2013, 414: 135-139
WANG X H, ZHANG Y W, YANG C Z. Anaesthetic effect of MS-222 on flounder Paralichthys olivaceus. Progress in Fishery Sciences, 2009, 30(3): 1-6[王秀华, 张烨伟, 杨春志. MS-222 对牙鲆麻醉效果. 渔业科学进展, 2009, 30(3): 1-6]
WEI P P, LI X, ZHANG J P, et al. Effects of LED spectra on morphological characters and gene expression of growth in Takifugu rubripes larvae. Progress in Fishery Sciences, 2020, 41(1): 162-168[魏平平, 李鑫, 张俊鹏, 等. LED 光谱对红鳍东方鲀仔稚鱼形态性状及生长相关基因表达的影响. 渔业科学进展, 2020, 41(1): 162-168]
WU H Y, OHNUKI H, OTA S, et al. New approach for monitoring fish stress: A novel enzyme-functionalized label-free immunosensor system for detecting cortisol levels in fish. Biosensors and Bioelectronics, 2017, 93: 57-64
YAMANOME T, MIZUSAWA K, HASEGAWA E I, et al. Green light stimulates somatic growth in the barfin flounder Verasper moseri. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2009, 311A(2): 73-79
YANG M F, CHEN Z L, HU F Y, et al. Light spectra regulated foraging and feeding behaviors shed light on stock enhancement of the sea urchin Strongylocentrotus intermedius. Aquaculture Reports, 2020, 18: 100480
YANG Z Y, XU Z, LENG C H. Crossing the whirlpool of transformation: A study on flounder farming economy and its transformation in China. Beijing: China Agriculture Press, 2011[杨正勇, 徐忠, 冷传慧, 等. 穿越转型的漩涡: 中国鲆鲽类养殖经济及其转型研究. 北京: 中国农业出版社, 2011]
YEH N, YEH P, SHIH N, et al. Applications of light-emitting diodes in researches conducted in aquatic environment. Renewable and Sustainable Energy Reviews, 2014, 32: 611-618
ZHANG Z Y, FAN Z, LI J H, et al. Effects of dietary duckweed levels on growth performance, digestive ability, and antioxidant ability in koi carp Cyprinus carpio. Journal of Dalian Ocean University, 2017, 32(4): 416-421[张植元, 范泽, 李静辉, 等. 饲料浮萍水平对黄金锦鲤生长性能、消化酶活力及抗氧化能力的影响. 大连海洋大学学报, 2017, 32(4): 416-421]