亚硒酸钠、酵母硒对彭泽鲫生长性能、组织硒含量、血清抗氧化能力及生化指标的影响
doi: 10.19663/j.issn2095-9869.20241031001
邱静芸1,2 , 肖俊1,2 , 丁立云1,2 , 龙凡1,2 , 姚远1,2 , 巫伟华1,2
1. 江西省水产科学研究所 江西 南昌 330039
2. 农业农村部湖泊渔业资源环境科学观测实验站 江西 南昌 330039
基金项目: 江西省现代农业产业体系(JXARS-03)和江西省高层次高技能领军人才培养工程(赣人社发[2022]34)共同资助
Dietary Sodium Selenite, Selenium Yeast on Growth, Tissue Selenium Contents, Serum Antioxidant Capacity, and Biochemical Indices of Carassius auratus var. Pengze
QIU Jingyun1,2 , XIAO Jun1,2 , DING Liyun1,2 , LONG Fan1,2 , YAO Yuan1,2 , WU Weihua1,2
1. Jiangxi Fisheries Research Institute, Nanchang 330039 , China
2. Experimental Station of Lake Fishery Resources and Environment, Ministry of Agriculture and Rural Affairs, Nanchang 330039 , China
摘要
为探究不同硒源(亚硒酸钠和酵母硒)及其硒水平对彭泽鲫(Carassius auratus var. Pengze)生长性能、组织硒含量、抗氧化能力及血清生化指标的影响,采用 2×3 双因子法进行饲养实验:硒源 (亚硒酸钠和酵母硒),硒添加量(0、0.5 和 5 mg/kg),制作 5 组饲料,对照组(Con)、亚硒酸钠组(LS 和 HS)和酵母硒组(LY 和 HY)。实验选用平均初始体质量为(210.28±1.06) g 彭泽鲫 240 尾,随机分为 5 组,每组 3 个重复,每个重复 16 尾。投喂实验饲料,养殖周期为 56 d。结果显示,各组彭泽鲫的存活率、增重率、特定生长率和饲料系数无显著差异(P>0.05)。高酵母硒组肌肉硒含量最高,高亚硒酸钠组次之,均显著高于对照组(P<0.05),硒源和硒水平对肌肉硒含量存在显著互作 (P<0.05);高亚硒酸钠组肝脏硒含量最高,高酵母硒组次之,均显著高于对照组和低水平组(P<0.05)。高酵母硒组血清过氧化氢酶活性显著高于对照组(P<0.05),低亚硒酸钠组和酵母硒组血清谷胱甘肽过氧化物酶活性显著高于对照组(P<0.05),硒源与硒水平对血清谷胱甘肽过氧化物酶和过氧化氢酶均存在显著互作(P<0.05)。高酵母硒组血清溶菌酶活性和血糖水平均显著高于其余各组(P<0.05),高亚硒酸组血糖显著高于对照组(P<0.05),硒源和硒水平对低密度脂蛋白存在显著互作(P<0.05)。高水平组肠道淀粉酶活性显著高于对照组和低水平组(P<0.05),酵母硒组和高亚硒酸钠组胰蛋白酶活性均显著高于对照组(P<0.05),硒源和硒水平对胰蛋白酶存在显著互作(P<0.05)。综上所述,高水平酵母硒可提高彭泽鲫组织硒沉积,两种水平酵母硒均可提升抗氧化能力和肠道酶活性;高水平亚硒酸钠可提高彭泽鲫组织硒沉积和肠道酶活性,低水平亚硒酸钠可提高彭泽鲫抗氧化能力。
Abstract
This study investigated the effects of different selenium sources (sodium selenite and yeast selenium) and selenium levels on growth performance, tissue selenium content, antioxidant capacity, and serum biochemical indices of Carassius auratus var. Pengze. A 2 × 3 factorial design was used for the feeding trial: Selenium source (sodium selenite and yeast selenium), selenium supplementation level (0, 0.5, and 5 mg/kg), and five diets were prepared. The control group (CON), sodium selenite group (LS and HS), and yeast selenium group (LY and HY) were established. A total of 240 C. auratus var. Pengze with an initial body weight of (210.28±1.06) g were randomly divided into five groups, with three replicates and 16 fish in each replicate. The experimental diets were fed, and the experimental period was 56 days. The results showed no significant differences in survival rate, weight gain rate, specific growth rate, and feed conversion ratio among all groups (P>0.05). The highest muscle selenium content was observed in the high selenium yeast group, followed by the high sodium selenite group; this value was significantly higher than that of the control group (P<0.05), and selenium sources and selenium levels had a significant interaction on muscle selenium content (P<0.05). For liver selenium content, the highest levels were found in the high sodium selenite group, followed by the high selenium yeast group; these levels were significantly higher than those observed in the control and low selenium groups (P<0.05). In addition, serum catalase activity was significantly increased in the high selenium yeast group compared to the control group (P<0.05). The serum glutathione peroxidase activity in the low sodium selenite and the selenium yeast groups was significantly higher than that of the control group (P<0.05). Furthermore, selenium sources and levels showed significant interactions that affected serum glutathione peroxidase and catalase activities (P<0.05). In addition, serum lysozyme activity and blood glucose levels were significantly increased in the high selenium yeast group compared to the other groups (P<0.05). Blood glucose levels in the high selenium group were also significantly higher than those in the control group (P<0.05), with significant interactions between selenium sources and levels affecting low-density lipoprotein levels (P<0.05). Intestinal amylase activity in the high selenium group was notably higher than that in the control and low selenium groups (P<0.05). Moreover, trypsin activity in the selenium yeast and high sodium selenite groups was significantly increased relative to that of the control group (P<0.05), with significant interactions between selenium sources and levels affecting trypsin activity (P<0.05). In conclusion, utilizing high levels of selenium yeast increases tissue selenium deposition, and the administration of two levels of selenium yeast improves antioxidant capacity and intestinal enzyme activity in C. auratus var. Pengze. Similarly, using high levels of sodium selenite increases tissue selenium deposition and intestinal enzyme activity within this species, whereas employing low sodium selenite levels improves antioxidant capacity in C. auratus var. Pengze.
硒(Se)是一种重要的微量元素,适量硒补充对鱼类维持生长发育,提高抗氧化和免疫调节功能,改善肠道酶活性,增加组织硒含量等方面具有重要作用(Sumana et al,2023; Díaz-Navarrete et al,2024),但硒过量或缺乏则可能导致水产动物死亡率升高、生长性能下降、组织病变和免疫异常等问题(Ma et al,2021; Burns et al,2024)。不同鱼类对硒的需求量差异较大,且硒在鱼体内的生物效应受到其存在形式和剂量的影响,因此,确定饲料中适宜的硒源和硒水平至关重要(张淑娟等,2023)。
国内外关于硒对不同水产动物营养生理作用的研究已有相关报道,主要集中于各水产品种对硒的需要量(Wu et al,2022; Abdulrahman Mustafa et al,2024)以及不同硒源对细鳞鲑(Brachymystax lenok)(魏凯等,2023)、石斑鱼(Epinephelus coioides)( 梁达智等,2019)、杂交鲟(Acipenser baerii×Acipenser schrenckii ♀)( 陈政等,2024)、草鱼(Ctenopharyngodon idella)(Zhu et al,2024)等鱼类生长性能、消化酶活力及硒沉积的影响。硒源主要有无机硒和有机硒两种形式,它们在生物利用度、生物积累等方面存在差异。刘家星等(2021)研究发现,饲料中额外添加硒,可提高鲤鱼(Cyprinus carpio)生长性能,且酵母硒效果优于亚硒酸钠。李雷等(2020)研究表明,有机硒(硒代蛋氨酸)在提高鱼生长性能、谷胱甘肽过氧化物酶活性和肌肉硒含量方面效果优于无机硒。硒在不同鱼类机体的适宜和耐受剂量也存在差异,普通鲤鱼饲粮中添加 0.5 mg/kg 和 1 mg/kg 有机硒可提高生长性能、鱼体蛋白质含量、硒沉积(Abdulrahman Mustafa et al,2024)。青鱼(Mylopharyngodn piceus)饲粮中添加 300 mg/kg 和 600 mg/kg 酵母硒(硒含量 0.59 mg/kg 和 1.15 mg/kg)不仅能改善的生长性能,提高硒、糖、脂代谢能力,增强抗氧化能力和免疫反应,还能减轻炎症反应(Zhang et al,2024)。凡纳对虾(Penaeus vannamei)饲料中添加 1 000 mg/kg 氨基葡萄糖硒可增加其体长和体重,提高其硒和氨基酸含量以及肠道菌群的多样性水平(梁梦琦等,2022)。鲫鱼是中国重要的淡水经济养殖鱼类之一,是仅次于草鱼的第二大消费品种,目前国内外关于鲫鱼硒需求量的研究主要集中在异育银鲫(Carassius auratus gibelio var. CAS V)上。 Zhu 等(2017) 研究表明,育成期异育银鲫 [(76.2±0.05)g]硒需求量为 0.73~1.19 mg/kg。李圆泽等(2023)研究发现,异育银鲫[(62.95±0.23)g]能够承受高达 20 mg/kg 的有机硒和 10 mg/kg 的无机硒。
彭泽鲫(Carassius auratus var. Pengze)是我国重要的经济鱼类,具有生长快、抗病力强和肉质鲜嫩等优点(Ding et al,2022),其营养价值高、市场需求量大,广受消费者的青睐。研究不同硒源和硒水平对彭泽鲫生长性能、组织硒含量、抗氧化能力、血清生化指标和肠道酶活性的影响,对于制定合理的硒补充策略和提高彭泽鲫的营养价值具有重要意义。目前,关于饲料中添加硒对彭泽鲫影响的研究尚未见报道,本研究旨在探讨不同硒源及其添加量对彭泽鲫生长性能、组织硒含量、血清抗氧化能力和生化指标的影响,以期为彭泽鲫的硒营养和健康养殖提供科学依据。
1 材料与方法
1.1 实验饲料
饲料以鱼粉、豆粕、菜粕为主要蛋白源,豆油为脂肪源,按照表1的配方配制各组饲料,对照组(CON)饲喂基础饲料,实验组在对照组基础上添加不同硒源,分别设置低亚硒酸钠组(LS,0.5 mg/kg 亚硒酸钠)、高亚硒酸钠组(HS,5 mg/kg 亚硒酸钠)、低酵母硒组(LY, 0.5 mg/kg 酵母硒)和高酵母硒组(HY,5 mg/kg 酵母硒)。其中,亚硒酸钠购自广东信豚生物科技有限公司,主要成分为亚硒酸钠和沸石粉,粉状,硒含量为 10 000 mg/kg;酵母硒购自广州天科科技集团,主要成分为酵母硒,粉状,硒含量为 2 000 mg/kg。采用原子荧光光度计法(GB 5009.93-2017 第一法)测得饲料中硒实际含量分别为 0.737、1.810、7.439、1.464 和 5.859 mg/kg。所有原料粉碎后过 80 目筛,按配方比例称量后,加油和水混合制成直径为 2 mm 的颗粒饲料,晾干后用封口袋封装,–20℃冰箱保存备用。
1.2 实验鱼及养殖管理
实验鱼来自江西省水产科学研究所黄马基地当年繁殖的同一批苗种。实验在江西省水产科学研究所循环水养殖系统中的养殖桶(φ800 mm×650 mm)中进行,选择 240 尾体质健壮、无病无伤的彭泽鲫个体,平均初始体质量为(210.28±1.06)g,随机分为 5 组,每组 3 个重复,每个重复 16 尾。实验期间,每天 08:30 和 16:30 饱食投喂饲料 2 次,水温保持在 24~26℃,溶解氧浓度不低于 7 mg/L,pH 维持在 6.8~7.2,氨氮和亚硝酸盐浓度不高于 0.1 mg/L,光周期为自然周期。
1.3 样品采集
实验结束时,禁食 24 h,称量各养殖桶中实验鱼总体质量。每个桶随机选取 6 尾鱼,MS-222(120 mg/L)麻醉后,测定生长指标。尾静脉采血,置于离心管中, 4℃静置 12 h,3 000 r/min 离心 15 min,取上清液,于–20℃冰箱保存,用于测定抗氧化能力和血清生化指标。将实验鱼置于冰盘上解剖,取出鱼的肝脏、背肌分别装袋,于–20℃冰箱保存,用以测定组织硒含量;取出鱼的肠道按质量(g)∶体积(mL)=1∶10 比例加入预冷生理盐水,先于低温匀浆,然后于 4℃、2 500 r/min 离心 10 min,取上清液,于 4℃保存,用于测定胰蛋白酶、脂肪酶和淀粉酶活性。
1饲料组成及营养水平(风干基础)
Tab.1Composition and nutrient levels of the basal diet (Air dry basis) /%
注:1:多维为每千克饲料提供(mg):硫胺素 15,核黄素 25,吡哆醇 15,维生素 B12 0.2,叶酸 5,碳酸钙 50,肌醇 500,烟酸 100,生物素 2,抗坏血酸 100,维生素 A 100,维生素 D 20,维生素 E 55,维生素 K 5。2:多矿为每千克饲料提供(mg):MgSO4·7H2O 450,FeSO4·7H2O 950,CuSO4·5H2O 10,ZnSO4·7H2O 108,MnSO4·4H2O 40,KI 1.5,NaCl600, NaH2PO4·2H2O 850,KH2PO4 1 350,CoSO4·4H2O 0.50;3:酵母硒和亚硒酸钠按照剂量添加在预混料中;4:营养水平为实测值。
Note: 1: Vitamin premix provided the following per kg of the diet (mg) : Thiamine 15, Riboflavin 25, Pyridoxine 15, VB12 0.2, Folic acid 5, Calcium carbonate 50, Inositol 500, Nicotinic acid 100, Biotin 2, Ascorbic acid 100, VA 100, VD 20, VE 55, VK 5; 2: Mineral premix provided the following per kg of the diet (mg) : MgSO4·7H2O 450, FeSO4·7H2O 950, CuSO4·5H2O 10, ZnSO4·7H2O 108, MnSO4·4H2O 40, KI 1.5, NaCl600, NaH2PO4·2H2O 850, KH2PO4 1 350, CoSO4·4H2O 0.50; 3: Yeast selenium and sodium selenite are added to the premix according to the composition; 4: Nutrient levels were calculated values.
1.4 测定指标与方法
实验期间,准确记录每个重复饲料投喂量和实验始末鱼尾数,以便计算各组实验鱼的存活率、增重率、特定生长率和饲料系数等生长性能指标,具体计算公式如下:
存活率(survival rate,SR,%)=100×实验鱼最终尾数/实验鱼初始尾数;
增重率(weight gain rate,WGR,%)=100×(终末体重–初始体重)/初始体重;
特定生长率(specific growth rate,SGR,%/d)= 100×(ln 鱼体末重–ln 鱼体初重)/养殖天数;
饲料系数(feed conversion ratio,FCR,%)=100× 摄食量/(终末体重–初始体重)。
超氧化物歧化酶(SOD)活性采用黄嘌呤氧化酶法;丙二醛(MDA)含量采用硫代巴比妥酸缩合比色法;总抗氧化能力(T-AOC),谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)活性和肠道脂肪酶、淀粉酶胰、蛋白酶活性采用南京建成生物工程研究所提供的试剂盒,按照使用说明进行测定。酸性磷酸酶(ACP)、溶菌酶(LZM)、碱性磷酸酶(ALP)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、总葡萄糖(GLU)、总甘油三酯(TG)、总胆固醇(CHO)、高密度脂蛋白(HDL)和低密度脂蛋白(LDL)含量均采用日立 7600-110全自动生化分析仪测定。
1.5 数据统计分析
实验数据采用 Excel 2010 软件进行整理后,采用软件 SPSS 22.0 进行统计分析,经正态检验及方差齐性检验后,采用双因素方差分析(two-way ANOVA)计算硒源(Source)和硒水平(Level)间的差异及二者的交互作用。然后进行单因素方差分析(one-way ANOVA),当各处理组间差异显著,对各组数据进行 Duncan´s 多重比较,显著性水平设为 P<0.05,数据分析结果用平均值±标准差(Mean±SD)表示。
2 结果
2.1 不同硒源和硒水平对彭泽鲫生长性能的影响
表2可知,各组存活率、增重率、特定生长率和饲料系数无显著差异(P>0.05),其中,HS 组彭泽鲫增重率和特定生长率分别较对照组降低 12.1%和 10.2%。
2不同硒源和硒水平对彭泽鲫生长性能的影响
Tab.2Effects of different selenium sources and selenium levels on growth performance of C. auratus var. Pengze
注:同行数据肩标不同小写字母表示差异显著(P<0.05),相同或无字母表示差异不显著(P>0.05),下表同。
Note: Data with different superscripts in the same row are significantly different (P<0.05) , while data with no superscripts or the same superscript are not significantly different (P>0.05) . The same below.
2.2 不同硒源和硒水平对彭泽鲫组织硒含量的影响
表3可知,硒水平显著影响彭泽鲫肌肉和肝脏硒含量(P<0.05),各实验组肌肉和肝脏硒含量均高于对照组,且随饲料中硒水平的提高,肝脏硒含量升高。硒源显著影响彭泽鲫肝脏硒含量(P<0.05),同一硒水平下,亚硒酸钠组肝脏硒含量高于酵母硒组。硒源和硒水平对肌肉硒含量存在显著互作(P<0.05),其中 HY 组肌肉硒含量最高。
2.3 不同硒源和硒水平对彭泽鲫血清抗氧化指标的影响
表4可知,不同硒源和硒水平显著影响彭泽鲫 GSH-Px 活性(P<0.05),且硒源和硒水平存在显著互作(P<0.05),其中 LY 组活性最高,LS 组次之;不同硒源显著影响 CAT 活性(P<0.05),且硒源和硒水平存在显著互作(P<0.05),其中,HY 组最高,LY 组次之。 MDA 水平随硒水平的增加而降低,但差异不显著(P>0.05)。
2.4 不同硒源和硒水平对彭泽鲫血清生化指标的影响
表5可知,硒水平和硒源均显著影响 LZM 活性(P<0.05),同一硒源,LZM 活性随着硒水平升高而提升(P<0.05);且同一硒水平下,酵母硒组 LZM 活性显著高于亚硒酸钠组(P<0.05)。硒水平和硒源均显著影响 GLU 水平(P<0.05),HS 和 HY 组 GLU 水平均显著高于 Con、LS 和 LY 组(P<0.05),且 HY 组 GLU 含量高于 HS 组(P<0.05)。硒水平显著影响 CHO 水平(P<0.05),随着硒水平的升高,血清 CHO 水平有所降低(P>0.05)。硒水平和硒源对血清 LDL 水平存在显著交互影响(P<0.05)。
3不同硒源和硒水平对彭泽鲫组织硒含量的影响
Tab.3Effects of different selenium sources and selenium levels on tissue selenium contents of C. auratus var. Pengze
4不同硒源和硒水平对彭泽鲫血清抗氧化指标的影响
Tab.4Effects of different selenium sources and selenium levels on serum antioxidant capacity of C. auratus var. Pengze
5不同硒源和硒水平对彭泽鲫血清生化指标的影响
Tab.5Effects of different selenium sources and selenium levels on serum biochemical indices of C. auratus var. Pengze
2.5 不同硒源和硒水平对彭泽鲫肠道消化酶的影响
表6可知,硒源显著影响肠道脂肪酶和胰蛋白酶活性(P<0.05),硒水平显著影响淀粉酶活性(P<0.05),硒源和硒水平对胰蛋白酶活性存在显著互作(P<0.05)。其中,随着硒水平的升高,各组淀粉酶活性均显著升高(P<0.05),且同一硒水平,酵母硒组淀粉酶活性高于亚硒酸钠组;LY 组胰蛋白酶活性最高,显著高于 HS、HY、Con 和 LS 组(P<0.05)。
3 讨论
3.1 不同硒源和硒水平对彭泽鲫生长性能和饲料利用率的影响
硒是影响鱼类生长和饲料利用率的重要微量元素,研究发现,0.8 mg/kg 硒多糖可提高黑鲷饲料利用效率(Wang et al,2019),2 mg/kg 硒纳米颗粒可显著提升尼罗罗非鱼(Oreochromis niloticus)的存活率、增重率、特定生长率和饲料转化率(Sheikh et al,2024)。而罗氏沼虾(Macrobrachium rosenbergii)摄入含 1.5 mg/kg 硒纳米的饲料后,其生长受到显著抑制,体内的消化酶活性显著降低(Satgurunathan et al,2023),杂交条纹鲈(Morone chrysops×M. saxatilis)摄入含 20 mg/kg 亚硒酸钠饲料后,出现体增重减少、饲料效率降低、采食量降低以及死亡率升高等问题(Jaramillo et al,2009)。这揭示不同鱼类适宜硒浓度不同,饲粮中硒处于合适的范围对动物具有营养作用,一旦超出或低于这个范围,则会导致动物出现急、慢性中毒或缺乏症。本研究中,硒对彭泽鲫增重率、特定生长率和饲料系数无显著影响,这与梁达智等(2019)关于 0.82~1.79 mg/kg 亚硒酸钠对石斑鱼幼鱼生长性能(存活率和饲料系数)无显著影响的结论一致。本研究条件下,仅高亚硒酸钠组造成增重率和特定生长率分别降低 12.1%和 10.2%,未见彭泽鲫发生死亡,实验硒的添加量只抑制了彭泽鲫的生长速度,而未达到致死水平。
6不同硒源和硒水平对彭泽鲫肠道消化酶活性的影响
Tab.6Effects of different selenium sources and selenium levels on intestinal enzyme activity of C. auratus var. Pengze
3.2 不同硒源和硒水平对彭泽鲫组织硒含量的影响
龚兵等(2023)研究指出,饵料中添加 0.6 mg/kg 硒代蛋氨酸能够提高黄鳝(Monopterus albus)肌肉组织硒含量。本研究比较基础饲粮与添加不同硒源和硒水平饲粮对彭泽鲫肌肉、肝脏硒沉积的影响发现,肝脏硒含量随着饲料硒水平的增加而增加,揭示肝脏作为代谢和解毒的重要器官,可能是硒沉积的主要场所之一,这与前人在斑马鱼(梁达智等,2019)和杂交条纹鲈(Cotter et al,2008)上的研究结论一致。研究发现,不同功能硒蛋白基因在肝脏、肌肉、心脏等组织中表达具有显著差异(刘光辉等,2024)。本研究中,彭泽鲫肌肉硒沉积量最高的是 HY 组,肝脏中硒沉积量最高的是 HS 组,这与 Lorentzen 等(1994)关于无机硒组肝脏硒含量高于有机硒组,而有机硒组肌肉硒含量高于无机硒组的结论相似。这是可能由于酵母硒可以通过主动运输机制被机体吸收,并迅速合成硒蛋白直接沉积到肌肉中,而亚硒酸钠主要通过被动扩散的方式被吸收,再转化为硒代蛋氨酸进而合成硒蛋白,才最终被沉积到肝脏中(Lu et al,2020; Liu et al,2023)。
3.3 不同硒源和硒水平对彭泽鲫血清抗氧化和生化指标的影响
硒是谷胱甘肽过氧化物酶的活性中心,大量研究表明,饲料中添加硒对水产养殖动物提升抗氧化能力有重要作用。例如,在黄颡鱼(Pelteobagrus fulvidraco)饲料中适量添加亚硒酸钠能够提高其体内谷胱甘肽过氧化物酶活性,降低体内自由基的生成(Hu et al,2016);在草鱼饲料中添加 0.3 mg/kg 纳米硒可显著提高血液总抗氧化能力,降低 MDA 含量(Zhu et al,2024)。本研究在饲料中添加 0.5 mg/kg 亚硒酸钠和不同水平酵母硒均可提高谷胱甘肽过氧化物酶活性,降低 MDA 含量,5 mg/kg 酵母硒可提高 CAT 活性。本研究硒可提高彭泽鲫血清抗氧化能力,可能与硒参与硒蛋白相关信号通路调控促进鱼体抗氧化相关靶基因的表达,保护细胞膜免受氧化损伤相关(Balsera et al,2019)。此外,酵母硒提高抗氧化效果优于亚硒酸钠,可能是酵母培养物可提高鱼体抗氧化能力(程鑫等,2019),也可能与酵母硒蛋白合成效率高于亚硒酸钠有关(Xing et al,2022)。本研究 LY 组血清 GSH-Px 活性高于 HY 组,这与雷莉辉等(2021)关于随着硒浓度升高,血清 GSH-Px 活性先升高后降低的研究结果相似。
不同硒源对血清生化指标影响不同。Saffari 等(2018)研究不同硒源对普通鲤鱼影响发现,有机硒组血清溶菌酶活性显著高于无机硒和未添加硒组,而血清总胆固醇和低密度脂蛋白水平显著低于无机硒和未添加硒组。张辰等(2023)研究发现,富硒壶瓶碎米荠(Cardamine hupingshanensis)可以提高青鱼幼鱼溶菌酶相关基因表达量。本研究中,硒源对溶菌酶活性、血糖水平具有显著影响,酵母硒效果优于亚硒酸钠,这可能是由于硒可调节关键基因表达影响生理功能,其中酵母硒较亚硒酸钠可更有效地上调与胰腺分泌、蛋白质消化与吸收、脂肪消化与吸收、花生四烯酸代谢、醚脂代谢相关的基因,如硒蛋白 M、磷脂酶 A2 等,进而改善鱼血清中的甘油三酯含量、超氧阴离子自由基等生化指标(胡俊茹等,2021)。本研究中,酵母硒提高了溶菌酶活性和血糖水平,降低了胆固醇含量,这与前人关于酵母硒可提高青鱼血液葡萄糖含量和脂质代谢能力(Zhang et al,2024)以及提高黑鲷(Acanthopagrus schlegelii)血清溶菌酶活性(肖金星等,2020)的研究结论相似。
3.4 不同硒源和硒水平对彭泽鲫肠道消化酶的影响
肠道是动物消化吸收的主要场所,鱼类主要靠消化酶,如淀粉酶、胰蛋白酶和脂肪酶等进行化学性消化。因此,肠道消化酶活性可作为衡量机体消化功能的必要指标(赵煜等,2024)。硒是参与肠道疾病的调节,影响肠道消化酶活性的重要微量元素(Ye et al,2021)。本研究中,酵母硒和亚硒酸钠均可显著提高淀粉酶活性,且两种水平酵母硒和高水平亚硒酸钠均可显著提高胰蛋白酶活性,低水平亚硒酸钠显著抑制胰蛋白酶活性,揭示不同硒源对胰蛋白酶活性影响最适硒水平不同,这与前人关于硒可提高水产动物消化酶活性的研究结论相似(李秀梅等,2017),酶活力的提高可能与适量硒可维持肠上皮细胞膜完整性、增加肠上皮细胞中蛋白质含量相关(傅春妮等,2021; Iqbal et al,2020),也可能与硒增强了小肠平滑肌的收缩促进肠蠕动,进而再提高小肠液中消化酶的分泌相关(Wang et al,2013)。
4 结论
综上所述,高水平硒添加可以显著提高彭泽鲫肌肉和肝脏中的硒含量,高水平酵母硒更容易在肌肉中蓄积,高水平亚硒酸钠更容易在肝脏中蓄积;不同硒的添加均可显著提高彭泽鲫血清抗氧化能力和肠道酶活性,高水平酵母硒在改善血清抗氧化能力和生化指标等方面优于亚硒酸钠,高水平硒添加量未对彭泽鲫生理功能造成负面影响。
1饲料组成及营养水平(风干基础)
Tab.1Composition and nutrient levels of the basal diet (Air dry basis) /%
2不同硒源和硒水平对彭泽鲫生长性能的影响
Tab.2Effects of different selenium sources and selenium levels on growth performance of C. auratus var. Pengze
3不同硒源和硒水平对彭泽鲫组织硒含量的影响
Tab.3Effects of different selenium sources and selenium levels on tissue selenium contents of C. auratus var. Pengze
4不同硒源和硒水平对彭泽鲫血清抗氧化指标的影响
Tab.4Effects of different selenium sources and selenium levels on serum antioxidant capacity of C. auratus var. Pengze
5不同硒源和硒水平对彭泽鲫血清生化指标的影响
Tab.5Effects of different selenium sources and selenium levels on serum biochemical indices of C. auratus var. Pengze
6不同硒源和硒水平对彭泽鲫肠道消化酶活性的影响
Tab.6Effects of different selenium sources and selenium levels on intestinal enzyme activity of C. auratus var. Pengze
ABDULRAHMAN MUSTAFA I, SOFY OMAR S. The effects of dietary organic selenium on growth, body composition and hematological parameters of common Carp (Cyprinus carpio) reared in recirculating aquaculture system. Cellular and Molecular Biology, 2024, 70(1): 87-93
BALSERA M, BUCHANAN B B. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radical Biology and Medicine, 2019, 140: 28-35
BURNS D P, DRUMMOND S E, WÖLFEL S, et al. Impaired upper airway muscle function with excessive or deficient dietary intake of selenium in rats. Antioxidants, 2024, 13(9): 1080
CHEN Z, LIU C, LIU H K, et al. Dietary sodium selenite, selenium yeast and selenium-enriched Spirulina on growth, antioxidant capacity and tissue selenium contents of juvenile hybrid sturgeon (Acipenser baerii ♂ × Acipenser schrenckii ♀). Acta Hydrobiologica Sinica, 2024, 48(1): 44-52[陈政, 刘翠, 刘昊昆, 等. 亚硒酸钠、酵母硒和富硒螺旋藻对杂交鲟幼鱼生长、抗氧化能力及组织硒含量的影响. 水生生物学报, 2024, 48(1): 44-52]
CHENG X, PAN T T, JIN M, et al. Effects of dietary yeast culture supplementation on growth performance, nonspecific immunity and intestinal health of Pelteobagrus fulvidraco. Journal of Fisheries of China, 2019, 43(4): 1080-1091[程鑫, 潘婷婷, 金敏, 等. 饲料中添加酵母培养物对黄颡鱼生长性能、非特异性免疫和肠道健康的影响. 水产学报, 2019, 43(4): 1080-1091]
COTTER P A, CRAIG S R, MCLEAN E. Hyperaccumulation of selenium in hybrid striped bass: A functional food for aquaculture? Aquaculture Nutrition, 2008, 14(3): 215-222
DÍAZ-NAVARRETE P, DANTAGNAN P, HENRIQUEZ D, et al. Selenized non-Saccharomyces yeasts and their potential use in fish feed. Fish Physiology and Biochemistry, 2024, 50(4): 1879-1894
DING L Y, CHEN W J, FU H Y, et al. Estimation of the optimum dietary protein to lipid ratio in juvenile Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture Nutrition, 2022, 2022(1): 2485134
FU C N, LI Y H, LI P C, et al. Effects of oligomeric chitosan selenium on oxidative damage and endoplasmic reticulum stress in Zearalenon-induced pig intestinal epithelial cells. Chinese Journal of Animal Nutrition, 2021, 33(9): 5226-5235[傅春妮, 李元辉, 李鹏程, 等. 低聚壳聚糖硒抵抗玉米赤霉烯酮诱导猪肠上皮细胞氧化损伤和内质网应激的作用研究. 动物营养学报, 2021, 33(9): 5226-5235]
GONG B, JU D D, XU H M, et al. Effect of selenomethionine on growth performance, selenium content in muscle tissue and serum biochemical indexes of Monopterus albus. Feed Research, 2023, 46(12): 61-64[龚兵, 巨丹丹, 徐慧敏, 等. 硒代蛋氨酸对黄鳝生长性能、肌肉组织硒含量及血清生化指标的影响. 饲料研究, 2023, 46(12): 61-64]
HU J R, HUANG Y H, WANG G X, et al. Deficient and excess dietary selenium levels affect growth performance, blood cells apoptosis and liver HSP70 expression in juvenile yellow catfish Pelteobagrus fulvidraco. Fish Physiology and Biochemistry, 2016, 42(1): 249-261
HU J R, YUAN X C, HUANG W, et al. Analysis of different selenium sources on regulation of signal pathways and key genes of Pelteobrus fulvidraco under low temperature stress based on transcriptome. Chinese Journal of Animal Nutrition, 2021, 33(8): 4662-4674[胡俊茹, 袁夕宸, 黄文, 等. 基于转录组分析不同硒源调节黄颡鱼适应低温应激的信号通路及关键基因. 动物营养学报, 2021, 33(8): 4662-4674]
IQBAL S, ATIQUE U, MAHBOOB S, et al. Effect of supplemental selenium in fish feed boosts growth and gut enzyme activity in juvenile tilapia (Oreochromis niloticus). Journal of King Saud University-Science, 2020, 32(5): 2610-2616
JARAMILLO JR F, PENG L I, GATLIN D M. Selenium nutrition of hybrid striped bass (Morone chrysops×M. saxatilis) bioavailability, toxicity and interaction with vitamin E. Aquaculture Nutrition, 2009, 15(2): 160-165
LEI L H, SUN J, GUAN W Y, et al. Effect of Se-yeast in dairy ration on blood selenium and serum antioxidant capacity of dairy cows. Feed Research, 2021, 44(15): 113-116[雷莉辉, 孙健, 关文怡, 等. 不同水平酵母硒对奶牛全血硒含量和血清抗氧化能力的影响. 饲料研究, 2021, 44(15): 113-116]
LI L, WU W T, XU Y, et al. Effects of different selenium sources on growth performance, antioxidant enzyme activity, muscle composition and selenium deposition of crucian. China Feed, 2020(4): 95-98[李雷, 吴伍涛, 许渊, 等. 不同硒源对鲫鱼生长性能、抗氧化酶活性、肌肉成分及硒沉积的影响. 中国饲料, 2020(4): 95-98]
LI X M, XU T, SUN G H, et al. Effects of dietary selenium-enriched yeast levels on important physiological enzymes and enrichment of selenium in sea cucumber (Apostichopus japonicus). Progress in Fishery Sciences, 2017, 38(4): 154-163[李秀梅, 徐涛, 孙国华, 等. 外源硒对仿刺参(Apostichopus japonicus) 重要生理相关酶活性及体内硒含量的影响. 渔业科学进展, 2017, 38(4): 154-163]
LI Y Z, LIU H K, GONG Y L, et al. High dietary doses of organic and inorganic selenium on growth performance, tissue selenium accumulation and blood biochemical parameters of gibel carp (Carassius auratus gibelio var. CAS V). Acta Hydrobiologica Sinica, 2023, 47(5): 702-712[李圆泽, 刘昊昆, 巩玉龙, 等. 饲料中添加高剂量有机硒和无机硒对异育银鲫生长性能、组织硒蓄积和血液生化指标的影响. 水生生物学报, 2023, 47(5): 702-712]
LIANG D Z, MA H Y, YANG Q H, et al. Effects of selenium sources and selenium levels on growth performance, immune enzyme activities and selenium contents of whole fish and vertebrae for juvenile grouper (Epinephelus coioide). Chinese Journal of Animal Nutrition, 2019, 31(6): 2777-2787[梁达智, 马豪勇, 杨奇慧, 等. 硒源及硒水平对斜带石斑鱼幼鱼生长性能、免疫酶活性和全鱼及脊椎骨硒含量的影响. 动物营养学报, 2019, 31(6): 2777-2787]
LIANG M Q, HUANG W C, SUN J A, et al. Effect of glucosamine selenium on growth, quality and intestinal microflora of Penaeus vannamei. Feed Research, 2022, 45(9): 60-65[梁梦琦, 黄文灿, 孙建安, 等. 氨基葡萄糖硒对南美白对虾生长、品质和肠道菌群的影响研究. 饲料研究, 2022, 45(9): 60-65]
LIU G H, YU A G, HE Y, et al. Cloning and analysis of selenoprotein genes in yellow catfish, Pelteobagrus fulvidraco. Journal of Huazhong Agricultural University, 2024, 43(1): 185-193[刘光辉, 余岸艮, 何杨, 等. 黄颡鱼硒蛋白基因的克隆与分析. 华中农业大学学报, 2024, 43(1): 185-193]
LIU J M, WANG Z, LI C, et al. Effects of selenium dietary yeast on growth performance, slaughter performance, antioxidant capacity, and selenium deposition in broiler chickens. Animals, 2023, 13(24): 3830
LIU J X, TAO L Z, YANG M, et al. Effect of selenium yeast on growth performance, muscle selenium deposition and disease resistance of Cyprinus Carpio fingerlings. China Feed, 2021(19): 43-48[刘家星, 陶丽竹, 杨马, 等. 酵母硒对鲤鱼鱼种生长性能、肌肉硒沉积量及抗病能力的影响. 中国饲料, 2021(19): 43-48]
LORENTZEN M, MAAGE A, JULSHAMN K. Effects of dietary selenite or selenomethionine on tissue selenium levels of Atlantic salmon (Salmo salar). Aquaculture, 1994, 121(4): 359-367
LU J, QU L, MA M, et al. Efficacy evaluation of selenium-enriched yeast in laying hens: Effects on performance, egg quality, organ development, and selenium deposition. Poultry Science, 2020, 99(11): 6267-6277
MA P, HU Z Y, LI L, et al. Dietary selenium promotes the growth performance through growth hormone-insulin-like growth factor and hypothalamic-pituitary-thyroid axes in grass carp (Ctenopharyngodon idella). Fish Physiology and Biochemistry, 2021, 47(4): 1313-1327
SAFFARI S, KEYVANSHOKOOH S, ZAKERI M, et al. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiology and Biochemistry, 2018, 44(4): 1087-1097
SATGURUNATHAN T, BHAVAN P S, KALPANA R, et al. Influence of garlic (Allium sativum) clove-based selenium nanoparticles on status of nutritional, biochemical, enzymological, and gene expressions in the freshwater prawn Macrobrachium rosenbergii (de man, 1879). Biological Trace Element Research, 2023, 201(4): 2036-2057
SHEIKH S, GHOJOGHI F, GHELICHI A, et al. Dietary effects of selenium nanoparticles on growth performance, survival rate, chemical composition, and muscle bioaccumulation of Nile tilapia (Oreochromis niloticus). Biological Trace Element Research, 2024, 202(5): 2308-2313
SUMANA S L, CHEN H G, SHUI Y, et al. Effect of dietary selenium on the growth and immune systems of fish. Animals, 2023, 13(18): 2978
WANG L, XIAO J X, HUA Y, et al. Effects of dietary selenium polysaccharide on growth performance, oxidative stress and tissue selenium accumulation of juvenile black sea bream, Acanthopagrus schlegelii. Aquaculture, 2019, 503: 389-395
WANG Y B, YAN X X, FU L L. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. International Journal of Nanomedicine, 2013, 8: 4007-4013
WEI K, MA L, LI X L, et al. Effects of different selenium sources in feed on growth performance, serum biochemical indexes and liver antioxidant capacity of young salmon. China Fisheries, 2023(9): 73-77[魏凯, 马龙, 李小龙, 等. 饲料中添加不同硒源对细鳞鲑幼鱼生长性能、血清生化指标和肝脏抗氧化能力的影响研究. 中国水产, 2023(9): 73-77]
WU Y B, MA H J, FU D H, et al. Growth, nutrient retention, waste output, and antioxidant capacity of juvenile triangular bream (Megalobrama terminalis) in response to dietary selenium yeast concentration. Aquaculture Nutrition, 2022, 2022: 9242188
XIAO J X, WANG L, ZHENG G, et al. Influences of dietary selenium polysaccharide on survival rate, immunity and oxidation resistance of juvenile black sea bream, Acanthopagrus schlegelii. Jiangsu Agricultural Sciences, 2020, 48(9): 196-201[肖金星, 王磊, 郑刚, 等. 硒化多糖对黑鲷存活、免疫力和抗氧化性能的影响. 江苏农业科学, 2020, 48(9): 196-201]
XING P C, SHI X, CUI W, et al. Yeast selenium exerts an antioxidant effect by regulating the level of selenoprotein to antagonize Cd-induced pyroptosis of chicken liver. Biological Trace Element Research, 2022, 200(9): 4079-4088
YE R H, HUANG J Q, WANG Z X, et al. Trace element selenium effectively alleviates intestinal diseases. International Journal of Molecular Sciences, 2021, 22(21): 11708
ZHANG C, JIA X W, QIAN P C, et al. Selenium-rich Cardamine hupingshanensis on growth, biochemical indices, selenium metabolism, antioxidant capacities and innate immunities in juvenile black carp (Mylopharyngodon piceus). Acta Hydrobiologica Sinica, 2023, 47(3): 523-534[张辰, 贾小巍, 钱鹏丞, 等. 富硒壶瓶碎米荠对青鱼幼鱼生长、生理生化、硒代谢、抗氧化及先天免疫的影响. 水生生物学报, 2023, 47(3): 523-534]
ZHANG P H, ZHANG C, YAO X F, et al. Selenium yeast improve growth, serum biochemical indices, metabolic ability, antioxidant capacity and immunity in black carp Mylopharyngodn piceus. Fish & Shellfish Immunology, 2024, 146: 109414
ZHANG S J, SHAO M L, CHEN X Y, et al. Biological functions and toxic effects of selenium on aquaculture animals and research advances of its mechanism. Chinese Journal of Animal Nutrition, 2023, 35(5): 2815-2827[张淑娟, 邵明丽, 陈旭阳, 等. 硒对水产养殖动物的生物学功能和毒性作用及其机理研究进展. 动物营养学报, 2023, 35(5): 2815-2827]
ZHAO Y, QU H T, CHEN P, et al. Effects of feeding strategy on growth, digestive enzymes, and liver structure in juvenile Coreius guichienoti. Progress in Fishery Sciences, 2024, 45(1): 95-104[赵煜, 曲焕韬, 陈沛, 等. 投喂策略对圆口铜鱼幼鱼生长、消化酶及肝脏组织结构的影响. 渔业科学进展, 2024, 45(1): 95-104]
ZHU C, WU Z F, LIU Q M, et al. Selenium nanoparticles in aquaculture: Unique advantages in the production of Se-enriched grass carp (Ctenopharyngodon idella). Animal Nutrition, 2024, 16: 189-201
ZHU L, HAN D, ZHU X M, et al. Dietary selenium requirement for on-growing gibel carp (Carassius auratus gibelio var. CAS Ⅲ). Aquaculture Research, 2017, 48(6): 2841-2851