Abstract:We applied experimental ecological approaches to study the allometric growth patterns at early developmental stages of Centropristis striata. Nikon E100 microscope and vernier caliper were used to measure the total length, mouth width, rostrum length, eye diameter, head length, head height, trunk length, trunk height, pectoral fin length and the tail fin length. All data were analyzed with appropriate statistical methods. The results showed that the growth of the total length of black sea bass conformed to the equation Y = 4.529-(9.227×10-5)X3 + 0.015X2 -0.189X (R2=0.994), and the dry body weight fit in the equation Y=0.002X3-0.151X2 3.257X-18.232 (R2=0.993),which displayed a J-shaped curve. Most of functional organs showed allometric growth patterns. We found that organs responsible for feeding and locomotive functions had relatively early growth inflection points. The growth inflection points of the mouth width, rostrum length, eye diameter, pectoral fin length and tail fin length were 20, 44, 32, 36, and 19 days post hatching respectively. The growth inflection points of other organs appeared at later time: head length, head height, abdomen length and trunk height had inflection points on 56, 37, 44 and 60 days post hatching respectively. There were also other models of allometric growth patterns, for example, the head length showed a negative allometric growth before reaching the inflection point but a constant growth pattern afterward. Allometric growth patterns ensure the priority development of organs that are required in key functions such as feeding and escaping from predators, which improved the viability of black sea bass. Our study will greatly help establish appropriate breeding conditions for black sea bass.